CS281B/Stat241B. Statistical Learning Theory. Lecture 5.
Peter Bartlett

1. Concentration inequalities

(a) Sub-exponential random variables.

(b) Martingale methods.




‘ Review:Chernoff technique'

Theorem: Fort > 0:

P(X —EX >1) < inf e MMx_, (N).
>

Theorem: [Hoeffding’s Inequality] For a random variablg € [a, b] with
EX = pand) € R,

A2 (b—a)?
3 .

In MX—M()\) S




Review: Sub-Gaussian, Sub-Exponential Random Variable

Definition: X is sub-Gaussiarwith parameter? if, for all \ € R,

\2o?

IHMX_“(A) S 5

Definition: X is sub-exponentialwith parametergo?, b) if, for all ||
1/b,




‘ Review: Sub-Exponential Random Variablej

Theorem: For X sub-exponential with parametes?, b),

exp ( 2t22> if 0 <t<o?/b,
exp (—5)  ift>0?/b.

PX>p+t) <

Example: X with variances?, bounded |(X — p| < b) is sub-exponential
with parameter$202, 2b).




‘ Sub-Exponential Random Variablej

Theorem: [Bernstein] For X with variances?, bounded |(X — u| < b),
andt > 0,

£2
P(X >p+1t) <exp <_2(02—|—bt)>°

Proof:
We saw above that

Eexp(A(X —p)) < exp (2(1)\—06\>\\)>

for |A] < 1/b. Setting\ = t/(bt + %) < 1/b gives the result.




Sub-Exponential Random Variableﬂ

Note:

o0? = E(X — p)? < b? (andt < b), so this bound implies something
similar to Hoeffding’s inequality. If the variance is smédf? < b?),
then it can be a large improvement. We’'ll see examples winese t
Improvement is necessary to get optimal rates.




‘ Sub-Exponential Random Variableﬂ

Note:

For independenk;, sub-exponential with parameteks?, b; ), the
sumX = X; + --- + X, Is sub-exponential with parameters

(Zz ’L’maX@ )
Indeed, forEX; = 0,

Mx () = H E exp(AX;)

< Hexp()\Qaf/Q) = exp <)\2 ZU?/2> ;

where the inequality holds provided| < 1/b; for all .




‘ Sub-Exponential Random Variableﬂ

Hence,

Theorem: For independenk;, sub-exponential with parameteks?, b; ),
with meany;,

Z(Xi — ) >t

1=1

_ exp(—nt?/(20%)) for0 <t < o?/b,
| exp(—nt/(2b)) fort > o2 /0,

wherecs? = Y. o7 andb = max; b;.




Consequences: Fast rates when variance is smIII

Variance bounded by expectation gives fast rates
Suppose that? < cu. Bernstein’s inequality says

t2
P(X >p+t) <exp <_2(02+bt)>'

Sett = au + e.
Then2(o? + bt) < c't, andt?/(c't) > e, so

P(X>1+a)u+e) <exp(—C'e).




Consequences: Fast rates when variance is smIII

Positive, small expectation: fast rates
For instance, itX = >_"" | Z;, Z; > 0, independent, them* < by, SO

1
Pl - Z: > (1 < —c"ne) .
(nz > ( —|—oz),u—|—e)_exp( c'ne)




Consequences: Fast rates when variance is smIII

Classification with a margin condition: fast rates
Suppose2n(X) — 1| > ca.s. Recall

R(f) = R(f7) = E1[f(X) # f7(X)] [2n(X) = 1

(
> cE1[f(X) # [(X)]
=B ((((X),Y) = ((f*(X),Y))]

< Var(((f(X),Y) = £(f7(X),Y)).
Bernstein (forZ;, = ¢(f(X;),Y;) — £(f*(X;),Y;)) implies

P (R(f) = R(f*) < (1= a)(R(f) = R(f)) =€) < exp(~ne).
Equivalently,




Consequences: Fast rates when variance is smIII

Then, for example, for a finité containingf*, if f is the minimizer of
the empirical riskR(f),

P (R(f) _R(fY) >

And this Is no more than for e = ¢




Consequences: Fast rates when variance is smIII

Convex regression with a strongly convex loss: fast rates
Consider!(y,y) = (§ — y)*. Definef* = argmin e r R(f), whereF is
convex.

— f(X))? = (Y — f(X))?)
— X))+ (X)) = f(X)? = (Y = f1(X))?)




Consequences: Fast rates when variance is smIII

Also, for |Y|, | f(X)| < b,

E((Y - f(X))?— (Y - f*(X))?)’
=E(2(Y — ff(X)(f(X) - f(X

(6b)°E (f*(X) — f(X))’
)

(60)*(R(f) — R(f))-

Again, variance is bounded in terms of expectation. As apaeeget fast
rates.




Concentration Bounds for Martingale Difference Sequenc

Next, we're going to consider concentration of martingaffecence
sequences. The application is to understand how tails of
f(X1,...,.X,) —Ef(Xy,...,X,) behave, for some functiofi.

If we write

F(X1,.. . X)) —Bf(Xy,....X,)

— ZE[f(Xl,...,Xn)\Xl, L X —E[f(X, L X)X X,
1=1

then we have represented this deviation ametingale difference
sequence (the Doob martingale). We get concentration because of the
many () independent contributions.
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Martingales I

Definition: A sequenc€’,, of random variables adapted to a filtratiah ig
amartingale if, for all n,

E|Y,| < o

F, 1s afiltration means these-fields are nestedr,, C F,,11.

Y,, iIs adapted to F,, means that each,, is measurable with respect to
F.

e.g.F, =o(Y1,...,Y,), theo-field generated by the first variables.
Then we say, IS a martingale sequence.

e.g.F, =o(X1,...,X,). ThenY, is a martingale sequence wit, .




Martingale Difference Sequencel

Definition: A sequenceD,, of random variables adapted to a filtrati@f
Is amartingale difference sequencd, for all n,

E|D,| < o

eqg.,.D,=Y,—Y, 1.

E[Dn+1|]:n] — E[Yn+1|]:n] - E[Ynu:n]

(because’, is measurable wtF,,, and because of the martingale

property).
HenceY, — Yo =Y. | D,.




