
CS281B/Stat241B. Statistical Learning Theory. Lecture 5.
Peter Bartlett

1. Concentration inequalities

(a) Sub-exponential random variables.

(b) Martingale methods.
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Review:Chernoff technique

Theorem: For t > 0:

P (X −EX ≥ t) ≤ inf
λ>0

e−λtMX−µ(λ).

Theorem: [Hoeffding’s Inequality] For a random variableX ∈ [a, b] with

EX = µ andλ ∈ R,

lnMX−µ(λ) ≤
λ2(b− a)2

8
.

2



Review: Sub-Gaussian, Sub-Exponential Random Variables

Definition: X is sub-Gaussianwith parameterσ2 if, for all λ ∈ R,

lnMX−µ(λ) ≤
λ2σ2

2
.

Definition: X is sub-exponentialwith parameters(σ2, b) if, for all |λ| <

1/b,

lnMX−µ(λ) ≤
λ2σ2

2
.
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Review: Sub-Exponential Random Variables

Theorem: ForX sub-exponential with parameters(σ2, b),

P (X ≥ µ+ t) ≤







exp
(

− t2

2σ2

)

if 0 ≤ t ≤ σ2/b,

exp
(
− t

2b

)
if t > σ2/b.

Example:X with varianceσ2, bounded (|X − µ| ≤ b) is sub-exponential

with parameters(2σ2, 2b).
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Sub-Exponential Random Variables

Theorem: [Bernstein] ForX with varianceσ2, bounded (|X − µ| ≤ b),

andt > 0,

P (X ≥ µ+ t) ≤ exp

(

−
t2

2(σ2 + bt)

)

.

Proof:

We saw above that

E exp(λ(X − µ)) ≤ exp

(
λ2σ2

2(1− b|λ|)

)

for |λ| < 1/b. Settingλ = t/(bt+ σ2) < 1/b gives the result.
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Sub-Exponential Random Variables

Note:

• σ2 = E(X − µ)2 ≤ b2 (andt < b), so this bound implies something

similar to Hoeffding’s inequality. If the variance is small(σ2 ≪ b2),

then it can be a large improvement. We’ll see examples where this

improvement is necessary to get optimal rates.
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Sub-Exponential Random Variables

Note:

• For independentXi, sub-exponential with parameters(σ2
i , bi), the

sumX = X1 + · · ·+Xn is sub-exponential with parameters
(∑

i σ
2
i ,maxi bi

)
.

Indeed, forEXi = 0,

MX(λ) =
∏

i

E exp(λXi)

≤
∏

i

exp(λ2σ2
i /2) = exp

(

λ2
∑

i

σ2
i /2

)

,

where the inequality holds provided|λ| < 1/bi for all i.
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Sub-Exponential Random Variables

Hence,

Theorem: For independentXi, sub-exponential with parameters(σ2
i , bi),

with meanµi,

P

(

1

n

n∑

i=1

(Xi − µi) ≥ t

)

≤







exp(−nt2/(2σ2)) for 0 ≤ t ≤ σ2/b,

exp(−nt/(2b)) for t > σ2/b,

whereσ2 =
∑

i σ
2
i andb = maxi bi.
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Consequences: Fast rates when variance is small

Variance bounded by expectation gives fast rates
Suppose thatσ2 ≤ cµ. Bernstein’s inequality says

P (X ≥ µ+ t) ≤ exp

(

−
t2

2(σ2 + bt)

)

.

Sett = αµ+ ǫ.

Then2(σ2 + bt) ≤ c′t, andt2/(c′t) ≥ c′′ǫ, so

P (X ≥ (1 + α)µ+ ǫ) ≤ exp (−c′′ǫ) .
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Consequences: Fast rates when variance is small

Positive, small expectation: fast rates
For instance, ifX =

∑n
i=1

Zi, Zi > 0, independent, thenσ2 ≤ bµ, so

P

(
1

n

∑

Zi ≥ (1 + α)µ+ ǫ

)

≤ exp (−c′′nǫ) .
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Consequences: Fast rates when variance is small

Classification with a margin condition: fast rates
Suppose|2η(X)− 1| ≥ c a.s. Recall

R(f)−R(f∗) = E1[f(X) 6= f∗(X)] |2η(X)− 1|

≥ cE1[f(X) 6= f∗(X)]

= cE (ℓ(f(X), Y )− ℓ(f∗(X), Y ))2

≤ cVar(ℓ(f(X), Y )− ℓ(f∗(X), Y )) .

Bernstein (forZi = ℓ(f(Xi), Yi)− ℓ(f∗(Xi), Yi)) implies

P
(

R̂(f)− R̂(f∗) ≤ (1− α)(R(f)−R(f∗))− ǫ
)

≤ exp (−c′nǫ) .

Equivalently,

P

(

R(f)−R(f∗) ≥
1

1− α
(R̂(f)− R̂(f∗)) +

ǫ

1− α

)

≤ exp (−c′nǫ) .
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Consequences: Fast rates when variance is small

Then, for example, for a finiteF containingf∗, if f̂ is the minimizer of

the empirical riskR̂(f),

P

(

R(f̂)−R(f∗) ≥
ǫ

1− α

)

≤ P




R(f̂)− R(f∗) ≥

1

1− α
(R̂(f̂)− R̂(f∗)
︸ ︷︷ ︸

≤0

) +
ǫ

1− α






≤ P

(

∃f, R(f)−R(f∗) ≥
1

1− α
(R̂(f)− R̂(f∗)) +

ǫ

1− α

)

≤ |F | exp (−c′nǫ) .

And this is no more thanδ for ǫ = c′′
log(|F |/δ)

n
.
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Consequences: Fast rates when variance is small

Convex regression with a strongly convex loss: fast rates
Considerℓ(ŷ, y) = (ŷ − y)2. Definef∗ = argminf∈F R(f), whereF is

convex.

R(f)− R(f∗)

= E
(
(Y − f(X))2 − (Y − f∗(X))2

)

= E
(
(Y − f∗(X) + f∗(X)− f(X))2 − (Y − f∗(X))2

)

= E




2(Y − f∗(X))(f∗(X)− f(X))
︸ ︷︷ ︸

≥0

+(f∗(X)− f(X))2






≥ E
(
(f∗(X)− f(X))2

)
.
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Consequences: Fast rates when variance is small

Also, for |Y |, |f(X)| ≤ b,

E
(
(Y − f(X))2 − (Y − f∗(X))2

)2

= E
(
2(Y − f∗(X))(f∗(X)− f(X)) + (f∗(X)− f(X))2

)2

≤ (6b)2E (f∗(X)− f(X))2

≤ (6b)2(R(f)− R(f∗)).

Again, variance is bounded in terms of expectation. As above, we get fast

rates.
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Concentration Bounds for Martingale Difference Sequences

Next, we’re going to consider concentration of martingale difference

sequences. The application is to understand how tails of

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) behave, for some functionf .

If we write

f(X1, . . . , Xn)−Ef(X1, . . . , Xn)

=

n∑

i=1

E[f(X1, . . . , Xn)|X1, . . . , Xi]−E[f(X1, . . . , Xn)|X1, . . . , Xi−1],

then we have represented this deviation as amartingale difference

sequence (the Doob martingale). We get concentration because of the

many (n) independent contributions.

15



Martingales

Definition: A sequenceYn of random variables adapted to a filtrationFn is

amartingale if, for all n,

E|Yn| < ∞

E[Yn+1|Fn] = Yn.

Fn is afiltration means theseσ-fields are nested:Fn ⊆ Fn+1.

Yn is adapted toFn means that eachYn is measurable with respect to
Fn.

e.g.Fn = σ(Y1, . . . , Yn), theσ-field generated by the firstn variables.
Then we sayYn is a martingale sequence.

e.g.Fn = σ(X1, . . . , Xn). ThenYn is a martingale sequence wrtXn.
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Martingale Difference Sequences

Definition: A sequenceDn of random variables adapted to a filtrationFn

is amartingale difference sequenceif, for all n,

E|Dn| < ∞

E[Dn+1|Fn] = 0.

e.g.,Dn = Yn − Yn−1.

E[Dn+1|Fn] = E[Yn+1|Fn]−E[Yn|Fn]

= E[Yn+1|Fn]− Yn = 0

(becauseYn is measurable wrtFn, and because of the martingale
property).
Hence,Yn − Y0 =

∑n

i=1
Di.
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