CS281B/Stat241B. Statistical Learning Theory. Lecture 5. Peter Bartlett - 1. Concentration inequalities - (a) Sub-exponential random variables. - (b) Martingale methods. # **Review: Chernoff technique** **Theorem:** For t > 0: $$P(X - \mathbf{E}X \ge t) \le \inf_{\lambda > 0} e^{-\lambda t} M_{X - \mu}(\lambda).$$ **Theorem:** [Hoeffding's Inequality] For a random variable $X \in [a, b]$ with $\mathbf{E}X = \mu$ and $\lambda \in \mathbb{R}$, $$\ln M_{X-\mu}(\lambda) \le \frac{\lambda^2 (b-a)^2}{8}.$$ Review: Sub-Gaussian, Sub-Exponential Random Variables **Definition:** X is sub-Gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$, $$\ln M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}.$$ **Definition:** X is **sub-exponential** with parameters (σ^2, b) if, for all $|\lambda| < 1/b$, $$\ln M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}.$$ ## **Review: Sub-Exponential Random Variables** **Theorem:** For X sub-exponential with parameters (σ^2, b) , $$P(X \ge \mu + t) \le \begin{cases} \exp\left(-\frac{t^2}{2\sigma^2}\right) & \text{if } 0 \le t \le \sigma^2/b, \\ \exp\left(-\frac{t}{2b}\right) & \text{if } t > \sigma^2/b. \end{cases}$$ Example: X with variance σ^2 , bounded $(|X - \mu| \le b)$ is sub-exponential with parameters $(2\sigma^2, 2b)$. **Theorem:** [Bernstein] For X with variance σ^2 , bounded $(|X - \mu| \le b)$, and t > 0, $$P(X \ge \mu + t) \le \exp\left(-\frac{t^2}{2(\sigma^2 + bt)}\right).$$ Proof: We saw above that $$\mathbf{E}\exp(\lambda(X-\mu)) \le \exp\left(\frac{\lambda^2 \sigma^2}{2(1-b|\lambda|)}\right)$$ for $|\lambda| < 1/b$. Setting $\lambda = t/(bt + \sigma^2) < 1/b$ gives the result. #### Note: • $\sigma^2 = \mathbf{E}(X - \mu)^2 \le b^2$ (and t < b), so this bound implies something similar to Hoeffding's inequality. If the variance is small ($\sigma^2 \ll b^2$), then it can be a large improvement. We'll see examples where this improvement is necessary to get optimal rates. #### Note: • For independent X_i , sub-exponential with parameters (σ_i^2, b_i) , the sum $X = X_1 + \cdots + X_n$ is sub-exponential with parameters $(\sum_i \sigma_i^2, \max_i b_i)$. Indeed, for $\mathbf{E}X_i = 0$, $$M_X(\lambda) = \prod_i \mathbf{E} \exp(\lambda X_i)$$ $$\leq \prod_i \exp(\lambda^2 \sigma_i^2 / 2) = \exp\left(\lambda^2 \sum_i \sigma_i^2 / 2\right),$$ where the inequality holds provided $|\lambda| < 1/b_i$ for all i. Hence, **Theorem:** For independent X_i , sub-exponential with parameters (σ_i^2, b_i) , with mean μ_i , $$P\left(\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu_i)\geq t\right)\leq \begin{cases} \exp(-nt^2/(2\sigma^2)) & \text{for } 0\leq t\leq \sigma^2/b,\\ \exp(-nt/(2b)) & \text{for } t>\sigma^2/b, \end{cases}$$ where $\sigma^2 = \sum_i \sigma_i^2$ and $b = \max_i b_i$. #### Variance bounded by expectation gives fast rates Suppose that $\sigma^2 \leq c\mu$. Bernstein's inequality says $$P(X \ge \mu + t) \le \exp\left(-\frac{t^2}{2(\sigma^2 + bt)}\right).$$ Set $t = \alpha \mu + \epsilon$. Then $2(\sigma^2 + bt) \le c't$, and $t^2/(c't) \ge c''\epsilon$, so $$P(X \ge (1 + \alpha)\mu + \epsilon) \le \exp(-c''\epsilon)$$. Positive, small expectation: fast rates For instance, if $X = \sum_{i=1}^{n} Z_i$, $Z_i > 0$, independent, then $\sigma^2 \leq b\mu$, so $$P\left(\frac{1}{n}\sum Z_i \ge (1+\alpha)\mu + \epsilon\right) \le \exp\left(-c''n\epsilon\right).$$ #### Classification with a margin condition: fast rates Suppose $|2\eta(X) - 1| \ge c$ a.s. Recall $$R(f) - R(f^*) = \mathbf{E}1[f(X) \neq f^*(X)] | 2\eta(X) - 1|$$ $$\geq c\mathbf{E}1[f(X) \neq f^*(X)]$$ $$= c\mathbf{E} \left(\ell(f(X), Y) - \ell(f^*(X), Y)\right)^2$$ $$\leq c\operatorname{Var} \left(\ell(f(X), Y) - \ell(f^*(X), Y)\right).$$ Bernstein (for $Z_i = \ell(f(X_i), Y_i) - \ell(f^*(X_i), Y_i)$) implies $$P\left(\hat{R}(f) - \hat{R}(f^*) \le (1 - \alpha)(R(f) - R(f^*)) - \epsilon\right) \le \exp\left(-c'n\epsilon\right).$$ Equivalently, $$P\left(R(f) - R(f^*) \ge \frac{1}{1 - \alpha}(\hat{R}(f) - \hat{R}(f^*)) + \frac{\epsilon}{1 - \alpha}\right) \le \exp\left(-c'n\epsilon\right).$$ Then, for example, for a finite F containing f^* , if \hat{f} is the minimizer of the empirical risk $\hat{R}(f)$, $$P\left(R(\hat{f}) - R(f^*) \ge \frac{\epsilon}{1 - \alpha}\right)$$ $$\leq P\left(R(\hat{f}) - R(f^*) \ge \frac{1}{1 - \alpha} (\underbrace{\hat{R}(\hat{f}) - \hat{R}(f^*)}) + \frac{\epsilon}{1 - \alpha}\right)$$ $$\leq P\left(\exists f, R(f) - R(f^*) \ge \frac{1}{1 - \alpha} (\hat{R}(f) - \hat{R}(f^*)) + \frac{\epsilon}{1 - \alpha}\right)$$ $$\leq |F| \exp(-c'n\epsilon).$$ And this is no more than δ for $\epsilon = c'' \frac{\log(|F|/\delta)}{n}$. #### Convex regression with a strongly convex loss: fast rates Consider $\ell(\hat{y}, y) = (\hat{y} - y)^2$. Define $f^* = \arg\min_{f \in F} R(f)$, where F is convex. $$R(f) - R(f^*)$$ $$= \mathbf{E} \left((Y - f(X))^2 - (Y - f^*(X))^2 \right)$$ $$= \mathbf{E} \left((Y - f^*(X) + f^*(X) - f(X))^2 - (Y - f^*(X))^2 \right)$$ $$= \mathbf{E} \left(\underbrace{2(Y - f^*(X))(f^*(X) - f(X))}_{\geq 0} + (f^*(X) - f(X))^2 \right)$$ $$\geq \mathbf{E} \left((f^*(X) - f(X))^2 \right).$$ Also, for $|Y|, |f(X)| \leq b$, $$\mathbf{E} \left((Y - f(X))^2 - (Y - f^*(X))^2 \right)^2$$ $$= \mathbf{E} \left(2(Y - f^*(X))(f^*(X) - f(X)) + (f^*(X) - f(X))^2 \right)^2$$ $$\leq (6b)^2 \mathbf{E} \left(f^*(X) - f(X) \right)^2$$ $$\leq (6b)^2 (R(f) - R(f^*)).$$ Again, variance is bounded in terms of expectation. As above, we get fast rates. ## **Concentration Bounds for Martingale Difference Sequences** Next, we're going to consider concentration of martingale difference sequences. The application is to understand how tails of $f(X_1, \ldots, X_n) - \mathbf{E} f(X_1, \ldots, X_n)$ behave, for some function f. If we write $$f(X_1, ..., X_n) - \mathbf{E}f(X_1, ..., X_n)$$ $$= \sum_{i=1}^n \mathbf{E}[f(X_1, ..., X_n) | X_1, ..., X_i] - \mathbf{E}[f(X_1, ..., X_n) | X_1, ..., X_{i-1}],$$ then we have represented this deviation as a martingale difference sequence (the Doob martingale). We get concentration because of the many (n) independent contributions. # **Martingales** **Definition:** A sequence Y_n of random variables adapted to a filtration \mathcal{F}_n is a **martingale** if, for all n, $$\mathbf{E}|Y_n|<\infty$$ $$\mathbf{E}[Y_{n+1}|\mathcal{F}_n] = Y_n.$$ \mathcal{F}_n is a **filtration** means these σ -fields are nested: $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$. Y_n is **adapted to** \mathcal{F}_n means that each Y_n is measurable with respect to \mathcal{F}_n . e.g. $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$, the σ -field generated by the first n variables. Then we say Y_n is a martingale sequence. e.g. $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Then Y_n is a martingale sequence wrt X_n . ## **Martingale Difference Sequences** **Definition:** A sequence D_n of random variables adapted to a filtration \mathcal{F}_n is a **martingale difference sequence** if, for all n, $$\mathbf{E}|D_n| < \infty$$ $$\mathbf{E}[D_{n+1}|\mathcal{F}_n] = 0.$$ e.g., $$D_n = Y_n - Y_{n-1}$$. $$\mathbf{E}[D_{n+1}|\mathcal{F}_n] = \mathbf{E}[Y_{n+1}|\mathcal{F}_n] - \mathbf{E}[Y_n|\mathcal{F}_n]$$ $$= \mathbf{E}[Y_{n+1}|\mathcal{F}_n] - Y_n = 0$$ (because Y_n is measurable wrt \mathcal{F}_n , and because of the martingale property). Hence, $$Y_n - Y_0 = \sum_{i=1}^n D_i$$.