1. Concentration inequalities
 (a) Markov, Chebyshev
 (b) Chernoff technique
 (c) Sub-Gaussian
 (d) Sub-Exponential
For empirical risk minimization strategies, which choose $f_n \in F$ to minimize

$$\hat{R}(f) = \hat{\mathbb{E}}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i),$$

how does the risk $R(f_n) = \mathbb{E}\ell(f_n(X), Y)$ behave?

Does $R(f_n) \to \inf_{f \in F} R(f)$?

How rapidly?
If we consider a single prediction rule f, we can appeal to the law of large numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i) \to E\ell(f(X), Y).$$

And, for instance, ℓ bounded implies $\Pr(|\hat{R}(f) - R(f)| > \epsilon)$ decreases exponentially in n.

For this, we’ll study concentration inequalities, which bound the probability of deviations of random variables from their expectations. But because we use data to choose f_n, we need something stronger than a law of large numbers.
Example:
For pattern classification ($\mathcal{Y} = \{0, 1\}$), consider $F = F_+ \cup F_-$ with

$$F_+ = \{1[S] : |S| < \infty\},$$
$$F_- = \{1[S] : |X - S| < \infty\}$$

Then for a continuous distribution on \mathcal{X} with $P(Y = 1|X) = 0.9$,

$$R(f) = \begin{cases}
0.1 & \text{for } f \in F_-, \\
0.9 & \text{for } f \in F_+.
\end{cases}$$

But for any sample, there is an empirical risk minimizer $f_n \in F_+$ with $\hat{R}(f) = 0$.
Risk bounds and uniform convergence

If the set F is finite, we can relate risk to empirical risk:

Theorem: For $\ell(f(x), y) \in \{0, 1\}$,

$$\Pr \left(\exists f \in F \text{ s.t. } \hat{R}(f) = 0 \text{ and } R(f) \geq \epsilon \right) \leq |F|e^{-\epsilon n}.$$

Proof:

$$\Pr \left(\bigcup_{f \in F} \{ \hat{R}(f) = 0, R(f) \geq \epsilon \} \right) \leq \sum_{f \in F} \Pr\{ \hat{R}(f) = 0, R(f) \geq \epsilon \}$$

$$\leq |F| \max_{f \in F} \Pr\{ \hat{R}(f) = 0, R(f) \geq \epsilon \}$$

$$\leq |F|(1 - \epsilon)^n$$

$$\leq |F| \exp(-n\epsilon).$$
So any F that is parameterized using a fixed number of bits satisfies this uniform convergence property.
Concentration inequalities

We’ll get back to uniform convergence properties later. For now, we’ll focus on tail probabilities like $P(T_n \geq t)$ for some statistic T_n. We could consider asymptotic results—like the central limit theorem:

$$\lim_{n \to \infty} P(\bar{X}_n \geq \mu + \sigma \sqrt{nt}) = 1 - \Phi(t).$$

This tells us what happens asymptotically, but we usually have a fixed sample size. What can we say in that case? For example, what is

$$P \left(|\bar{X}_n - \mu| \geq \epsilon \right)?$$

These are concentration inequalities, i.e., bounds on this kind of probability that \bar{X}_n is concentrated about its mean.
We’ll look at several concentration inequalities, that exploit various kinds of information about the random variables.

1. Using moment bounds:
 Markov (first), Chebyshev (second)

2. Using moment generating function bounds, for sums of independent r.v.s:
 Chernoff; Hoeffding; sub-Gaussian, sub-exponential random variables; Bernstein.

3. Martingale methods:
 Hoeffding-Azuma, bounded differences.
Markov’s Inequality

Theorem: For $X \geq 0$ a.s., $E X < \infty$, $t > 0$:

$$P(X \geq t) \leq \frac{E X}{t}.$$

Proof:

$$E X = \int X dP$$

$$\geq \int_t^{\infty} x dP(x)$$

$$\geq t \int_t^{\infty} dP(x)$$

$$= t P(X \geq t).$$
Consider $|X - \mathbb{E}X|$ in place of X.

Theorem: For $\mathbb{E}X < \infty$, $f : [0, \infty) \to [0, \infty)$ strictly monotonic, $\mathbb{E}f(|X - \mathbb{E}X|) < \infty$, $t > 0$:

$$P(|X - \mathbb{E}X| \geq t) = P(f(|X - \mathbb{E}X|) \geq f(t)) \leq \frac{\mathbb{E}f(|X - \mathbb{E}X|)}{f(t)}.$$
Moment Inequalities

e.g., \(f(a) = a^2 \) gives Chebyshev’s inequality:

Theorem:

\[
P(|X - \mathbb{E}X| \geq t) \leq \frac{\text{Var}(X)}{t^2}.
\]

e.g., \(f(a) = a^k \):

Theorem:

\[
P(|X - \mathbb{E}X| \geq t) \leq \frac{\mathbb{E}|X - \mathbb{E}X|^k}{t^k}.
\]
Chernoff bounds

Use $a \mapsto \exp(\lambda a)$ for $\lambda > 0$:

Theorem: For $E X < \infty$, $E \exp(\lambda (X - E X)) < \infty$, $t > 0$:

$$P(X - E X \geq t) = P(\exp(\lambda (X - E X)) \geq \exp(\lambda t)) \leq \frac{E \exp(\lambda (X - E X))}{\exp(\lambda t)} = e^{-\lambda t} M_{X - \mu}(\lambda).$$

$M_{X - \mu}(\lambda) = E \exp(\lambda (X - \mu))$ (for $\mu = E X$) is the **moment-generating function** of $X - \mu$.
Example: Gaussian

For $X \sim N(\mu, \sigma^2)$, $M_{X-\mu}(\lambda)$ is

$$E \exp(\lambda(X - \mu)) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp(\lambda x - x^2/(2\sigma^2)) \, dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp \left(\frac{\lambda^2 \sigma^2}{2} - \frac{(x/\sigma - \lambda\sigma)^2}{2} \right) \, dx$$

$$= \exp(\lambda^2 \sigma^2/2) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{(y - \lambda\sigma)^2}{2} \right) \, dy$$

$$= \exp(\lambda^2 \sigma^2/2),$$

for the change of variable $y = x/\sigma$.
Thus,

$$\log P(X - \mu \geq t) \leq - \sup_{\lambda > 0} (\lambda t - \log M_{X-\mu}(\lambda))$$

$$= - \sup_{\lambda > 0} \left(\lambda t - \frac{\lambda^2 \sigma^2}{2} \right)$$

$$= - \frac{t^2}{2\sigma^2},$$

using the optimal choice $\lambda = t/\sigma^2 > 0$.

Example: Gaussian
Example: Gaussian

For $X \sim N(\mu, \sigma^2)$, it’s easy to check that the Chernoff technique gives a tight bound:

$$\lim_{n \to \infty} \frac{1}{n} \log P(\bar{X}_n - \mu \geq t) = -\frac{t^2}{2\sigma^2}.$$
Example: Bounded Support

Theorem: [Hoeffding’s Inequality] For a random variable $X \in [a, b]$ with $E X = \mu$ and $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \leq \frac{\lambda^2 (b - a)^2}{8}.$$

Note the resemblance to a Gaussian: $\lambda^2 \sigma^2 / 2$ vs $\lambda^2 (b - a)^2 / 8$. (And since P has support in $[a, b]$, $\text{Var} X \leq (b - a)^2 / 4$.)
Example: Hoeffding’s Inequality Proof

Define

\[A(\lambda) = \log (\mathbb{E} e^{\lambda X}) = \log \left(\int e^{\lambda x} \, dP(x) \right), \]

where \(X \sim P \). Then \(A \) is the log normalization of the exponential family random variable \(X_\lambda \) with reference measure \(P \) and sufficient statistic \(x \).

Since \(P \) has bounded support, \(A(\lambda) < \infty \) for all \(\lambda \), and we know that

\[
A'(\lambda) = \mathbb{E}(X_\lambda), \quad A''(\lambda) = \text{Var}(X_\lambda).
\]

Since \(P \) has support in \([a, b]\), \(\text{Var}(X_\lambda) \leq (b - a)^2 / 4 \). Then a Taylor expansion about \(\lambda = 0 \) (at this value of \(\lambda \), \(X_\lambda \) has the same distribution as \(X \), hence the same expectation) gives

\[
A(\lambda) \leq \lambda \mathbb{E}X + \frac{\lambda^2}{2} \frac{(b - a)^2}{4}.
\]
Sub-Gaussian Random Variables

Definition: X is sub-Gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}.$$

Note:

- Gaussian is sub-Gaussian.
- X sub-Gaussian iff $-X$ sub-Gaussian.
Sub-Gaussian Random Variables

Note:

- X sub-Gaussian implies

\[P(X - \mu \geq t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right), \]
\[P(X - \mu \leq -t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right), \]
\[P(|X - \mu| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2}\right). \]
Sub-Gaussian Random Variables

Note:

- X_1, X_2 independent, sub-Gaussian with parameters σ_1^2, σ_2^2, implies $X_1 + X_2$ sub-Gaussian with parameter $\sigma_1^2 + \sigma_2^2$.

Indeed, for independent X_1, X_2,

$$M_{X_1+X_2} = \mathbb{E} \exp (\lambda (X_1 + X_2))$$

$$= \mathbb{E} \exp (\lambda X_1) \mathbb{E} \exp (\lambda X_2)$$

$$= M_{X_1} M_{X_2}.$$

So $\log M_{X_1+X_2-\mu} = \log M_{X_1-\mu_1} + \log M_{X_2-\mu_2} \leq \lambda^2 (\sigma_1^2 + \sigma_2^2)/2$.
Hoeffding Bound

Theorem: For X_1, \ldots, X_n independent, $\mathbb{E}X_i = \mu_i$, X_i sub-Gaussian with parameter σ_i^2, then for all $t > 0$,

$$
P \left(\sum_{i=1}^{n} (X_i - \mu_i) \geq t \right) \leq \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} \sigma_i^2} \right).$$

E.g., for $\mathbb{E}X_i = 0$, $X_i \in [a, b]$, we have $\sigma_i^2 = (b - a)^2 / 4$ so

$$
P \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(-\frac{2nt^2}{(b - a)^2} \right).$$
Sub-Exponential Random Variables

Definition: X is **sub-exponential** with parameters (σ^2, b) if, for all $|\lambda| < 1/b$,

$$
\log M_{X-\mu}(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}.
$$

Examples:

- Sub-Gaussian X with parameter σ^2 is sub-exponential with parameters (σ^2, b) for all $b > 0$.
Theorem: For X sub-exponential with parameters (σ^2, b),

$$P(X \geq \mu + t) \leq \begin{cases}
\exp \left(-\frac{t^2}{2\sigma^2}\right) & \text{if } 0 \leq t \leq \sigma^2 / b, \\
\exp \left(-\frac{t}{2b}\right) & \text{if } t > \sigma^2 / b.
\end{cases}$$
Proof: Assume \(\mu = 0 \). As before,

\[
P(X \geq t) \leq \exp(-\lambda t) \mathbb{E} \exp(\lambda X)
\leq \exp \left(-\lambda t + \frac{\lambda^2 \sigma^2}{2} \right)
\]

provided \(0 \leq \lambda < 1/b \). As before, we optimize the choice of \(\lambda \). But now, it is constrained to \([0, 1/b]\). Without this constraint, the minimum occurs at \(\lambda^* = t/\sigma^2 \). So if

\[
t/\sigma^2 < 1/b \iff t < \sigma^2/b,
\]

we have

\[
P(X \geq t) \leq \exp(-\lambda^* t + \lambda^*^2 \sigma^2/2) = \exp(-t^2/(2\sigma^2)).
\]
If \(t \) is larger, the minimum occurs at \(\lambda = 1/b \) (since the function \(t \mapsto -\lambda t + \frac{\lambda^2 \sigma^2}{2} \) is monotonically decreasing in \([0, \lambda^*]\), which contains \([0, 1/b]\)). Substituting this \(\lambda \) gives

\[
P(X \geq t) \leq \exp\left(-\frac{t}{b} + \frac{\sigma^2}{2b^2}\right) \leq \exp\left(-\frac{t}{2b}\right),
\]

where the second inequality follows from \(t \geq \frac{\sigma^2}{b} \).
Sub-Exponential Random Variables

Example: X variance σ^2, bounded: $|X - \mu| \leq b$.

\[
E \exp(\lambda(X - \mu)) = 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \lambda^k \frac{E(X - \mu)^k}{k!}
\]

\[
\leq 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} (|\lambda|b)^{k-2}.
\]

And for $|\lambda| < 1/b$, this is no more than

\[
E \exp(\lambda(X - \mu)) \leq 1 + \frac{\lambda^2 \sigma^2}{2(1 - b|\lambda|)} \leq \exp \left(\frac{\lambda^2 \sigma^2}{2(1 - b|\lambda|)} \right).
\]
So if $|\lambda| < 1/(2b)$, $1 - b|\lambda| > 1/2$ and

$$\mathbb{E} \exp(\lambda(X - \mu)) \leq \exp(\lambda^2 \sigma^2).$$

Thus, X is sub-exponential with parameters $(2\sigma^2, 2b)$.
1. Concentration inequalities
 (a) Markov, Chebyshev
 (b) Chernoff technique
 (c) Sub-Gaussian
 (d) Sub-Exponential