
CS281B/Stat241B. Statistical Learning Theory. Lecture 3.
Peter Bartlett

1. Review: Linear threshold functions, perceptron algorithm.

2. Lower bounds (d/n) on minimax risk for linear threshold functions.

3. Upper and lower bounds (R2/nγ2) on minimax risk for perceptron

algorithm.

4. Risk bounds, uniform convergence, concentration.
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Review: Linear threshold functions on R
d

F =
{

x 7→ sign(θ′x) : θ ∈ R
d
}

.

Empirical risk minimization:

Choosef from F to minimize theempirical risk,

R̂(f) = Êℓ(f(X), Y ) =
1

n

n
∑

i=1

ℓ(f(Xi), Yi).
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Review: Perceptron algorithm

Input: (X1, Y1), . . . , (Xn, Yn) ∈ R
d × {±1}

θ0 = 0 ∈ R
d, t = 0

while some(xi, yi) is misclassified, i.e.,yi 6= sign(θTt xi)

pick some misclassified(xi, yi)

θt+1 := θt + yixi

t := t+ 1

Returnθt.
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Review: Perceptron algorithm

Theorem: For anyθ ∈ R
d such that for alli, yiθTxi >

0 (linearly separable data), for any choices made at the

update step, the perceptron algorithm terminates (with

empirical risk zero) after no more thanR
2

γ2 updates, where

R = max
i

‖xi‖, (radius of data)

γ = min
i

θTxiyi
‖θ‖

. (margin)
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A glimpse of kernel methods

Notes:

• We can writeθt in terms of the data:

θt =
∑

i αixi with ‖α‖1 =
∑

i |αi| = t.

• We can replace the inner product〈x, θ〉 = xT θ with an arbitrary

inner product:

predict: ŷi = sign
(

∑

j αj〈xj , xi〉
)

,

update: if ŷi 6= yi, setα(t+1)
i := α

(t)
i + yi.

So the perceptron algorithm (and its convergence proof) works in a more

generalinner product space.
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Minimax risk

Consider the minimax risk,

minmax
P

ER(fn),

where the max is over allP for which somef ∈ F has zero risk, and the
min is over all methods that use data to choose a prediction rule fn
(perhaps inF , perhaps not).

If n ≤ d, then we should expect the minimax risk to be large. For
instance, ifx1, . . . , xn are linearly independent, then for anyy1, . . . , yn,
we can findθ ∈ R

d such that

θ′ [x1|x2| · · · |xn] = [y1, y2, . . . , yn],

and hencesign(θ′xi) = yi.

So we can fitany labels, and we should not expect the predictions for
subsequent points to be accurate.
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Minimax risk lower bound

Theorem: For anyn ≥ 1 and any mappingfn :

R
d ×

(

R
d × {±1}

)n
→ {±1}, there is a probability

distributionP on R
d × {±1} for which some linear

threshold functionf ∈ F hasR(f) = 0 but

ER(fn) ≥
min (n, d)− 1

2n

(

1−
1

n

)n

.

Notes:

1. fn need not use prediction rules from the classF of linear threshold
functions.

2. P can depend onn. That is, the theorem does not show that for some
P the risk decreases at least as slowly asd/n. Rather, it shows that
there is no uniform upper bound on risk that’s better thand/n.
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Minimax risk lower bound: proof

Uses the probabilistic method: chooseP randomly from some classP,

and show that the expectation ofR(fn) under this random choice is large.

This implies that forsome distribution in the class,R(fn) is large.

(NB: not constructive. TheP must depend on the algorithm. But every

algorithm must fail.)

We’d like the distributions inP to satisfy:

1. For somef ∈ F , R(f) = 0.

2. A sample of sizen contains limited information about thisf .

For (1), we restrict the marginal distribution onRd to have support on a

linearly independent set{v1, . . . , vd} ⊂ R
d. So for any

b = (b1, . . . , bd) ∈ {±1}d, there is anfb ∈ F with, for all i, fb(vi) = bi.
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Minimax risk lower bound: proof

For (2), we concentrate the probability on a single point, say vd, and make

the other points unlikely:

Pb(x, y) =







ǫ
d−1 if (x, y) = (vi, bi) for i = 1, . . . , d− 1,

1− ǫ if (x, y) = (vd, bd).

The idea is that many points will not be seen in the sample (andhence

their label cannot be predicted), but they will have enough mass that these

mistakes matter.

DefineU = {v1, . . . , vd−1} − {X1, . . . , Xn} as the set ofunseen ‘light’

elements ofS. LetN = |U |.
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Minimax risk lower bound: proof

Chooseb uniformly at random from{±1}d (henceP u.a.r. fromP).

ER(fn) =
d−1
∑

k=0

E [R(fn)|N = k] Pr(N = k)

and E[R(fn)|N = k] ≥
1

2
k

ǫ

d− 1
.

This is because, for theN unseen points inU , the correspondingbi can be

chosen afterwards (the bits are independent). So on those points, the

decision rule can do no better than tossing a coin.
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Minimax risk lower bound: proof

So

ER(fn) =
d

∑

k=1

E [R(fn)|N = k] Pr(N = k)

≥
ǫ

2(d− 1)

d
∑

k=1

kPr(N = k)

=
ǫ

2(d− 1)
EN.

But the expected number of unseen light elements is

EN =

d−1
∑

i=1

Pr (vi 6∈ {X1, . . . , Xn})

= (d− 1)

(

1−
ǫ

d− 1

)n

.
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Minimax risk lower bound: proof

Thus,

ER(fn) ≥
ǫ

2

(

1−
ǫ

d− 1

)n

.

Then chooseǫ to optimize the bound:

Forn ≥ d− 1, chooseǫ = (d− 1)/n. Then

ER(fn) ≥
d− 1

2n

(

1−
1

n

)n

.

Otherwise (ifn < d− 1), chooseǫ = (n− 1)/n(< (d− 1)/n). Then

ER(fn) ≥
n− 1

2n

(

1−
n− 1

(d− 1)n

)n

≥
n− 1

2n

(

1−
1

n

)n

.
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Minimax risk lower bound

Theorem: For anyn ≥ 1 and any mappingfn :

R
d ×

(

R
d × {±1}

)n
→ {±1}, there is a probability

distributionP on R
d × {±1} for which some linear

threshold functionf ∈ F hasR(f) = 0 but

ER(fn) ≥
min (n, d)− 1

2n

(

1−
1

n

)n

.

So for any method, ifd/n is large, some probability distribution will

cause a large excess risk.
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Perceptron algorithm

We’ll see that, ifd/n is small, then small empirical risk over linear

threshold functions ensures small risk.

The perceptron algorithm converges quickly ifP allows a large margin

solution. In that case, its solution incorporates few (approximately

R2/γ2) (Xi, Yi) pairs. The data iscompressed in some sense. This is

enough to ensure good performance.
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Perceptron algorithm

Theorem: SupposeP is such that, for someθ ∈ R
d andγ > 0,

‖X‖ ≤ R, and
θ′XY

‖θ‖
≥ γ. a.s.

Define fn as the function returned by the perceptron al-

gorithm with input (X1, Y1), . . . , (Xn, Yn), and f̃n as the

function returned by the perceptron algorithm with input

(X1, Y1), . . . , (XM , YM ), whereM is chosen uniformly from

{1, . . . , n}. Then

ER(f̃n) ≤
R2

nγ2
.
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Perceptron algorithm: Proof

DefineDm = ((X1, Y1), . . . , (Xm, Ym))

ER(f̃n) =
1

n

n
∑

m=1

Eℓ(fm(X ;Dm), Y )

= E
1

n

n
∑

m=1

ℓ(fm(Xm+1;D
m), Ym+1),

because(X, Y ) and(Xm+1, Ym+1) are iid. But the perceptron

convergence theorem shows that

n
∑

m=1

ℓ(fm(Xm+1;D
m), Ym+1) ≤

R2

γ2
,
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Perceptron algorithm: Lower bound

Idea: If algorithm makes no more thank mistakes, then expected

proportion of mistakes is no more thank/n.

And this is the best we can hope for under these conditions.

Theorem: For anyfn, γ,R, d, n, there is aP onR
d × {±1}

s.t. someθ ∈ R
d has

θ′XY

‖θ‖
≥ γ and ‖X‖ ≤ R a.s.,

but

ER(fn) ≥
min(R2/γ2, n, d)− 1

2n

(

1−
1

n

)n

.

17



Risk bounds and uniform convergence

For empirical risk minimization strategies, which choosefn ∈ F to

minimize

R̂(f) = Êℓ(f(X), Y ) =
1

n

n
∑

i=1

ℓ(f(Xi), Yi),

how does the riskR(fn) = Eℓ(fn(X), Y ) behave?

DoesR(fn) → inff∈F R(f)?

How rapidly?
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Risk bounds and uniform convergence

If we consider a single prediction rulef , we can appeal to the law of large

numbers:
1

n

n
∑

i=1

ℓ(f(Xi), Yi) → Eℓ(f(X), Y ).

And with some assumptions (e.g., on the moments ofℓ(f(X), Y )), we

can obtain rates. For instance,ℓ bounded impliesPr(|R̂(f)−R(f)| > ǫ)

decreases exponentially inn.

For this, we’ll studyconcentration inequalities, which bound the

probability of deviations of random variables from their expectations. But

because we use data to choosefn, we need something stronger than a law

of large numbers.
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Risk bounds and uniform convergence

Example:
For pattern classification (Y = {0, 1}), considerF = F+ ∪ F− with

F+ = {1[S] : |S| < ∞},

F− = {1[S] : |X − S| < ∞}

Then for a continuous distribution onX with P (Y = 1|X) = 0.9,

R(f) =







0.1 for f ∈ F−,

0.9 for f ∈ F+.

But for any sample, there is an empirical risk minimizerfn ∈ F+ with

R̂(f) = 0.
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Overview

1. Review: Linear threshold functions, perceptron algorithm.

2. Lower bounds (d/n) on minimax risk for linear threshold functions.

3. Upper and lower bounds (R2/nγ2) on minimax risk for perceptron

algorithm.

4. Risk bounds, uniform convergence, concentration.
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