
CS281B/Stat241B. Statistical Learning Theory. Lecture 2.
Peter Bartlett

1. Review: Probabilistic formulation of prediction problems.

2. Pattern classification: plug-in estimators.

3. Empirical risk minimization.

4. Linear threshold functions.

5. Perceptron algorithm.
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Review: Probabilistic formulation

Assume:

• There is a probability distributionP onX × Y,

• The pairs(X1, Y1), . . . , (Xn, Yn), (X, Y ) are chosen independently

according toP

The aim is to choosef with smallrisk:

R(f) = Eℓ(f(X), Y ).

If we choosef ∈ F , can we achieve smallexcess risk,

R(fn)− inf
f∈F

R(f)?
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Pattern classification

Consider two-class classification:Y = {±1}.

Notation: represent the joint distributionP onX × Y as the pair(µ, η),

whereµ is the marginal distribution onX andη is the conditional

probability ofY givenX ,

η(x) = P (Y = 1|X = x).
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Pattern classification

If we knowη, we could use it to find a decision rule that minimizes risk.

To see this, notice that we can write the expected loss as an expectation of

a conditional expectation,

R(f) = Eℓ(f(X), Y )

= EE[ℓ(f(X), Y )|X ]

= E(ℓ(f(X), 1)P (Y = 1|X) + ℓ(f(X),−1)P (Y = −1|X))

= E(1[f(X) 6= 1]η(X) + 1[f(X) 6= −1](1− η(X)))

= E(1[f(X) 6= 1]η(X) + (1− 1[f(X) 6= 1])(1− η(X)))

= E(1[f(X) 6= 1](2η(X)− 1) + 1− η(X)) .
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Bayes decision rule

Clearly, this expectation is minimized by choosingf = f∗, where

f∗(x) =







1 if η(x) ≥ 1/2,

−1 if η(x) < 1/2.

Obviously, ifη(x) = 1/2, the choice does not affect the risk.

Denote the optimal risk (theBayes risk), by

R∗ = inf
f

R(f) = R(f∗).

f∗ is called theBayes decision rule.

Notice that any choice forf∗(x) is equally good whenη(x) = 1/2, so

there can be several Bayes decision rules.
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Risk and distance fromf ∗

The excess risk of a decision rule (above the Bayes risk) can be quantified

in terms of a certain distance fromf∗.

Theorem: For anyf : X → Y,

R(f)−R(f∗) = E(1[f(X) 6= f∗(X)]|2η(X)− 1|) .
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Risk and distance fromf ∗: Proof

We have seenR(f) = E(1[f(X) 6= 1)(2η(X)− 1) + 1− η(X)).
Hence,

R(f)−R(f∗) = E(1[f(X) 6= 1]− 1[f∗(X) 6= 1]) (2η(X)− 1).

But

(1[f(X) 6= 1]− 1[f∗(X) 6= 1]) (2η(X)− 1)

= 1[f(X) 6= f∗(X)] (1[f(X) 6= 1]− 1[f∗(X) 6= 1]) (2η(X)− 1)

=







1[f(X) 6= f∗(X)](2η(X)− 1) if 2η(X)− 1 ≥ 0,

1[f(X) 6= f∗(X)](−1)(2η(X)− 1) if 2η(X)− 1 < 0.

(from the definition off∗)

= 1[f(X) 6= f∗(X)]|2η(X)− 1|,
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Plug-in methods

This suggests one family of pattern classification methods:plug-in

methods:

• Use the data to come up with an estimateη̂ of η,

• Choose

fη̂(x) =







1 if η̂(x) ≥ 1/2,

−1 otherwise.
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Plug-in methods

In estimatingη, what criterion should we aim to minimize?

L1(µ) distance between̂η andη suffices:

Theorem: For anyη̂ : X → R,

R(fη̂)−R∗ ≤ 2E |η(X)− η̂(X)| .
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Plug-in methods: Proof

We have seen:

R(fη̂)−R∗ = 2E1[fη̂(X) 6= f∗(X)]|η(X)− 1/2|.

Now, if fη̂(X) 6= f∗(X), thenη̂(X) andη(X) must lie on opposite sides
of 1/2, so

|η(X)− η̂(X)| = |η(X)− 1/2|+ |η̂(X)− 1/2| ≥ |η(X)− 1/2|.

Thus, whenfη̂(X) 6= f∗(X), we have

1[fη̂(X) 6= f∗(X)]|η(X)− 1/2| ≤ |η(X)− η̂(X)|

And this inequality is trivially true when the indicator is zero. Hence,

R(fη̂)−R∗ = 2E1[fη̂(X) 6= f∗(X)]|η(X)− 1/2|
≤ 2E|η(X)− η̂(X)|.
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Estimating η is not necessary

Notice that estimatingη accurately is not necessary for accurate

classification. In particular, this bound for a plug-in classifier can be very

loose. For example, ifη(X) ∈ {0, 1}, then for anyǫ > 0, there is âη

satisfying

• η̂ andη are always on the same side of1

2
, and

• |η̂(X)− η(X)| = 1−ǫ
2

a.s.

So

R(fη̂)−R∗ = 0 ≪ 1− ǫ = 2E|η(X)− η̂(X)|.

That is, the bound might be vacuous even though the classifieris optimal.
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Choosing from a class of decision rules

An alternative to modelling the conditional distributionη of Y givenX :

fix a classF of decision rules (functions fromX toY) and use the data to

choosefn from F .

For example, consider the class of linear threshold functions onX = R
d,

F =
{

x 7→ sign(θ′x) : θ ∈ R
d
}

.

The decision boundaries are hyperplanes through the origin

(d− 1-dimensional subspaces), and the decision regions are half-spaces

through the origin. (PICTURE)
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Linear threshold functions

For thresholdedlinear functions, the decision boundaries are hyperplanes

through the origin.

For thresholdedaffinefunctions, the decision boundaries are arbitrary

hyperplanes.

Essentially equivalent:

F =
{

x 7→ sign(θ′x+ c) : θ ∈ R
d, c ∈ R

}

=
{

x 7→ sign(θ̃′x̃) : θ̃ ∈ R
d+1

}

,

where we definẽx′ = (x′1). For notational simplicity, we’ll stick to the

linear case.
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Empirical risk minimization

How can we choosef ∈ F? One approach isempirical risk minimization:

Choosef from F to minimize theempirical risk,

R̂(f) = Êℓ(f(X), Y ) =
1

n

n
∑

i=1

ℓ(f(Xi), Yi).

14



Linear threshold functions

Consider empirical risk minimization over the class of linear threshold

functions.

Approximation Very restricted class of decision rules. Can consider a

much bigger class, and retain many of the attractive properties of

linearly parameterized functions, by considering a nonlinear

transformationφ : Rd → R
D for someD ≫ d. (Kernel methods.)

Estimation Smalld/n is ok. Large can also be ok if we regularize.

Computation Easy ifR̂(f) = 0. In general, hard if not. Can simplify if

we consider alternative (convex) loss functionsℓ.
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Perceptron algorithm

Input: (X1, Y1), . . . , (Xn, Yn) ∈ R
d × {±1}

θ0 = 0 ∈ R
d, t = 0

while some(xi, yi) is misclassified, i.e.,yi 6= sign(θTt xi)

pick some misclassified(xi, yi)

θt+1 := θt + yixi

t := t+ 1

Returnθt.

Here,

sign(α) =















1 α > 0,

−1 α < 0,

0 α = 0.

PICTURE
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Perceptron convergence theorem

Theorem: Given linearly separable data(i.e., there is a

θ ∈ R
d such that for alli, yiθTxi > 0), for any choices

made at the update step, it terminates (with empirical risk

zero) after no more thanR
2

γ2 updates, where

R = max
i

‖xi‖, (radius of data)

γ = min
i

θTxiyi
‖θ‖ . (margin)
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Proof

The idea is to use the inner productθTt θ as a measure of progress, and

show that each mistake gives a big increase to the inner product (alignsθt
with θ), but gives only a small increase to‖θt‖.

First,

θTt+1θ = (θt + yixi)
T θ

≥ θTt θ + γ‖θ‖.

But θ0 = 0, soθTt θ ≥ tγ‖θ‖.
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Proof

On the other hand,

‖θt+1‖2 = ‖θt + yixi‖2

= ‖θt‖2 + ‖xi‖2 + 2yiθ
T
t xi

≤ ‖θt‖2 +R2.

But θ0 = 0, so‖θt‖2 ≤ tR2.

Combining (and using Cauchy-Shwarz):

tγ‖θ‖ ≤ θTt θ ≤ ‖θt‖‖θ‖ ≤
√
tR‖θ‖.
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Linear threshold functions

For linearly separable data(i.e., there is aθ ∈ R
d such that for alli,

yiθ
Txi > 0), finding an empirical risk minimizer corresponds to findinga

point satisfyingn linear inequalities:

yiθ
Txi > 0.

In particular, it can be solved with a linear program:

max
γ,θ

γ

s.t. yiθ
Txi ≥ γ.

So we can find a solution in polynomial time (even though the optimal γ

might be exponentially small, so the perceptron algorithm might take

exponential time).
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Overview

1. Pattern classification:Y = {±1}.

2. Plug-in estimators:R(fη̂)−R∗ ≤ 2E |η(X)− η̂(X)|.

3. Empirical risk minimization.

4. Linear threshold functions.

5. Perceptron algorithm: convergence.
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