CS281B/Stat241B. Statistical Learning Theory. Lecture 1.
Peter Bartlett

1. Organizational issues.
2. Overview.

3. Probabilistic formulation of prediction problems.

4. Game theoretic formulation of prediction problems.




‘Organizational Issues'

Lectures: Tue/Thu 12:30-2:00, 334 Evans.

Peter Bartlett. bartlett@cs.
Office hours: Mon 11-12 (Sutardja-Dai Hall), Thu 2-3 (Evag98

GSI: Alan Malek. malek@berkeley Office hours: TBA.

Web site: see http://www.stat.berkeley.edbartlett/courses
Check it for details of office hours, the syllabus, assignisien
readings, lecture notes, and announcements.

No text. See website for readings.




‘Organizational Issues'
Assessment:

Homework Assignments (50%): posted on the website.

(approximately one every two weeks)
Final Project (50%): Proposals due March 13. Report due May 2

Required background:
CS281A/Stat241A/Stat205A/Stat210A.




\Overview.

Theoretical analysis of prediction methods.

1. Probabilistic formulation of prediction problems

2. Risk bounds

3. Game theoretic formulation of prediction problems
4. Regret bounds

5. Algorithms:
(a) Kernel methods

(b) Boosting algorithms

6. Model selection




\ Probabilistic For mulations of Prediction Problems.

Aim: Predict an outcomg from some sed’ of possible outcomes, on the
basis of some observatianfrom a feature spac&. Some examples:

L Y
words in a document topic

(sports, music, tech, ...

Image of a digit in a zipcode the digit

email message Spam or ham

sentence correct parse tree

patient medical test results patient disease state

gene expression levels of a tissue samplaresence of cancer




\ Probabilistic For mulations of Prediction Problems'

L Y
phylogenetic profile of a gene gene function

(i.e., relationship to genomes of other species)
Image of a signature on a check identity of the writer

web search query ranked list of pages

Usedata sebf n pairs:

(ajlayl): <.y <£Un,yn),

to choose a functiorf : X — ) so that, for subsequeft, y) pairs, f(x)
IS a good prediction of.




\ Probabilistic For mulations of Prediction Problems.

To define the notion of a ‘good prediction,” we can defiless function

)Y x)Y—R.

So/(y,y) quantifies the cost of predictingwhen the true outcome s
Then the aim is to ensure th&tf (x), y) is small.




\ Probabilistic For mulations of Prediction Problems'

Example: In pattern classificatiorproblems, the aim is
to classify a patterm into one of a finite number of classes
(that Is, the label spac® is finite). If all mistakes are
equally bad, we could define

1 ifyg#uy,
0 otherwise.

U(g,y) =1 # y| = {

Example: Inaregressiomproblem, with) = R, we might
choose the quadratic loss functidity, y) = (7 — y)>.




‘ Probabilistic Assumptions'

Assume:
There is a probability distributio® on X’ x ),

The pairs(X1,Y1), ..., (X,, Yy), (X, Y) are chosen independently
according taP

The aim is to choos¢ with smallrisk:

R(f) = EL(f(X),Y).

For instance, in the pattern classification example, thisas
misclassification probability.

R(f) = E1[f(X) # Y] = Pr(f(X) £ 7).




‘ Probabilistic Assumptions'

Some things to notice:
1. Capital letters denote random variables.

2. The distributionP can be viewed as modelling both the relative

frequency of different features or covariat&s together with the
conditional distribution of the outcome given X'.

3. The assumption that the data is i.1.d. is a strong one.
But we need to assume something about what the informatithrein

data(x1,91), ..., (T,, yn) tells us about X, Y).




‘ Probabilistic Assumptions'

4. The functionr — f,(x) = fn(z; X1, Y1,...,X,,Y,) israndom,
since it depends on the random data = (X1, Y1,..., X,, Ya).
Thus, the risk

— E[(f(X: X1, Y0, X0, ), Y) D)

Is a random variable. We might aim forr& f,,) small, orR( f,,)
small with high probability (over the training data).




Key Questions'

We might choosgd,, from some clasg’ of functions

(for instance, linear function, sparse linear functiorgisien tree, neural
network, kernel machine).

There are several guestions that we are interested in:

1. Can we design algorithms for whigh is close to the best that we
could hope for, given that it was chosen frdif? (that is, is
R(fn) —infrcr R(f) small?)

2. How does the performance ¢f depend om? On the complexity of
EF? OnP?

3. Can we ensure that( f,,) approaches the best possible performandg
(that is, the infimum over alf of R(f))?

12



‘ Statistical Learning Theory vs Classical Statistics'

e In this course, we are concerned with results that applyrgela
classes of distribution®, such as the set @il joint distributions on
X x Y. In contrast to parametric problems, we will not (often)
assume thaP comes from a small (e.g., finite-dimensional) space,

Pe{Py:0¢c 0}

e Since we make few assumptions Bnand we are concerned with
high-dimensional data, the goal is typically to ensure that
performance is close to the best we can achieve using piadicies

from some fixed class'.




Keylssues'

Several key issues arise in designing a prediction methoithése
problems:

Approximation How good is the best in the classF' that we are using?
That is, how close tinf s R(f) isinf ;e r R(f)?

Estimation How close is our performance to that of the bgsnh F'?
(Recall that we only have access to the distributtbthrough
observing a finite data set.)

Computation We need to use the data to choggetypically by solving
some kind of optimization problem. How can we do that effidyh




Keylssues'

o We will not spend much time on the approximation properties,
beyond observing sommiversalityresults (that particular classes
can achieve zero approximation error). (But for complexofems
and simple—hence statistically feasible—function clas#@s is not
a very interesting property.)

e We will focus on theestimationissue.

o We will take the approach that efficiency of computation is a
constraint Indeed, the methods that we spend most of our time
studying involve convex optimization problems. (e.g. nadr
methods involve solving a quadratic program, and boosting
algorithms involve minimizing a convex criterion in a CorR\&et.)




M ore General Probabilistic Formulation I

We can consider a decision-theoretic formulation: Have
1. Outcome spacg.
2. Prediction strategy : Z2* — A.
3. Loss functior? : A x Z — R,

Protocol:
e See outcomefy,..., Z,, L.i.d. from unknownP’ on Z.
e Choose actioa = S(Z1,...,72,) € A.
e Incurrisk &(a, 7).

Aim is to minimize the excess risk, compared to the best datis

E(S( 21, Zn), Z)|Z}] — inf El(a, Z),
ac




M ore General Probabilistic Formulation I

Example: In pattern classificatiomproblems,

Example: In density estimatioproblems,

o Z =R? (or some measurable space).

e A = measurable functions of (densities wrt a ref
erence measure af).

o Up,y) = —logp(z).

In this case, if the distributio®® has a density in4, the
excess risk is the KL-divergence betweeand P.




\ Game Theoretic Formulation I

Decision method plays; € A
World revealsy; € Z

Incur lossl(ay, z)

o Cumulative lossL,, = » {(a, z).
t=1

e Aim to minimizeregret that is, perform well compared to the best (in
retrospect) from some class:

regret= Z@(at, 24) — ng&Z@(a, 2t) .
t=1

t=1

7 \ - 7

Ly Ly,

e Data can badversariallychosen.




\ Game Theoretic Formulation: Motivation I

. Appropriate formulation for online/sequential prethatproblems.

. Adversarial model is often appropriate (e.g., in compsé&eurity,
computational finance).

. Adversarial model assumes little:
It is often straightforward to convert a strategy for an adaaal
environment to a method for a probabilistic environment.

. Studying the adversarial model can revealdbaterministic coref a
statistical problem: there are strong similarities betwine
performance guarantees in the two cases.

. Significant overlaps in the design of methods for the twabf@ms:
e Regularizatiorplays a central role.
o Often have a natural interpretation aBayesian methad




‘ Examples'

Example: Inan onlingpattern classificatioproblem (like
spam classification),

o U(f,(z,y) = 1f(z) # yl.

The action is a classification rule, and the regret indic
how close the spam misclassification rate is to the besit
formance possible in retrospect on the particular emai
guence.




Example: Portfolio Optimization I

Aim to choose a portfolio (distribution over financial ingtnents) to
maximize utility.

Other market players can profit from making our decisionsdrask.
For example, if our trades have a market impact, someone can
front-run (trade ahead of us).

The decision method’s actian is a distribution on then
instrumentsg; € A™ ={a € [0,1]: > . a; = 1}.

The outcome; Is the vector of relative price increases,c R"; the
1th component is the ratio of the price of instrumeéat timet to its
price at the previous time.

The loss/ might be the negative logarithm of the portfolio’s increasg

lat, ze) = —log (ar - 2¢) .




Example: Portfolio Optimization I

e We might compare our performance to the best stock (distoibus
a delta function), or a set of indices (distribution cor@ss to Dow
Jones Industrial Average, etc), or the set of all distridmsi

e The regret is then the log of the ratio of the maximum value the
portfolio would have at the end (for the best mixture chotoghe
final portfolio value:

14 —mi ¢ — ] 2 ) =N ] .
tzzl (a¢, zt) grélﬂtzzl (a, z¢) ]gleaj(; og(a-z¢) tzzl og(az-z¢),

sincea - z; IS the relative increase in capital under action




Key Questions'

Often interested in minimax regret, which is the value ofghene:

ai <1 an

acA
— t=1

n n
min max - - - min max (Z l(at, z;) —min » {(a, zt)> .
Zn
t=1

1. How does the performance (minimax regret) dependd@n the
complexity of A (and Z)?

. Can we design computationally efficient strategies tlat@st)
achieve the minimax regret?

. What if the strategy hdsnited informatior? (e.g., auctions, bandits)




Overview: probabilistic and gametheoreticformulations.

Decision-theoretic formulation:
For outcomeZ, actiona, incur lossl(a, 7).

Probabilistic:
Datazi,...,Z,, Z1.1.d.,
Use data to choosec A,

Aim to minimize excess risk,

El(a, Z) — inf El(a*,Z).
ta,Z) — inf El(a”, Z)




Overview: probabilistic and gametheoreticformulations'

Online:
Arbitrary (even adversarial) choice of data.

Sequential game: at rournd

Chooses,,
SeeZz;,
Incur lossl(a;, Z;).

Aim to minimize regret (excess cumulative loss):

Zﬁ(at,Zt) — inf K(CL*,Zt).
t

a*ceA
t




