
CS281B/Stat241B. Statistical Learning Theory. Lecture 1.
Peter Bartlett

1. Organizational issues.

2. Overview.

3. Probabilistic formulation of prediction problems.

4. Game theoretic formulation of prediction problems.
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Organizational Issues

• Lectures: Tue/Thu 12:30–2:00, 334 Evans.

• Peter Bartlett. bartlett@cs.

Office hours: Mon 11-12 (Sutardja-Dai Hall), Thu 2-3 (Evans 399).

• GSI: Alan Malek. malek@berkeley Office hours: TBA.

• Web site: see http://www.stat.berkeley.edu/∼bartlett/courses

Check it for details of office hours, the syllabus, assignments,

readings, lecture notes, and announcements.

• No text. See website for readings.
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Organizational Issues

• Assessment:
Homework Assignments (50%): posted on the website.

(approximately one every two weeks)

Final Project (50%): Proposals due March 13. Report due May 2.

• Required background:

CS281A/Stat241A/Stat205A/Stat210A.
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Overview

Theoretical analysis of prediction methods.

1. Probabilistic formulation of prediction problems

2. Risk bounds

3. Game theoretic formulation of prediction problems

4. Regret bounds

5. Algorithms:

(a) Kernel methods

(b) Boosting algorithms

6. Model selection
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Probabilistic Formulations of Prediction Problems

Aim: Predict an outcomey from some setY of possible outcomes, on the

basis of some observationx from a feature spaceX . Some examples:

x y

words in a document topic

(sports, music, tech, ...)

image of a digit in a zipcode the digit

email message spam or ham

sentence correct parse tree

patient medical test results patient disease state

gene expression levels of a tissue samplepresence of cancer
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Probabilistic Formulations of Prediction Problems

x y

phylogenetic profile of a gene gene function

(i.e., relationship to genomes of other species)

image of a signature on a check identity of the writer

web search query ranked list of pages

Usedata setof n pairs:

(x1, y1), . . . , (xn, yn),

to choose a functionf : X → Y so that, for subsequent(x, y) pairs,f(x)

is a good prediction ofy.
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Probabilistic Formulations of Prediction Problems

To define the notion of a ‘good prediction,’ we can define aloss function

ℓ : Y × Y → R.

Soℓ(ŷ, y) quantifies the cost of predictinĝy when the true outcome isy.

Then the aim is to ensure thatℓ(f(x), y) is small.
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Probabilistic Formulations of Prediction Problems

Example: In pattern classificationproblems, the aim is

to classify a patternx into one of a finite number of classes

(that is, the label spaceY is finite). If all mistakes are

equally bad, we could define

ℓ(ŷ, y) = 1[ŷ 6= y] =







1 if ŷ 6= y,

0 otherwise.

Example: In aregressionproblem, withY = R, we might

choose the quadratic loss function,ℓ(ŷ, y) = (ŷ − y)2.
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Probabilistic Assumptions

Assume:

• There is a probability distributionP onX × Y,

• The pairs(X1, Y1), . . . , (Xn, Yn), (X, Y ) are chosen independently

according toP

The aim is to choosef with smallrisk:

R(f) = Eℓ(f(X), Y ).

For instance, in the pattern classification example, this isthe

misclassification probability.

R(f) = E1[f(X) 6= Y ] = Pr(f(X) 6= Y ).
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Probabilistic Assumptions

Some things to notice:

1. Capital letters denote random variables.

2. The distributionP can be viewed as modelling both the relative

frequency of different features or covariatesX , together with the

conditional distribution of the outcomeY givenX .

3. The assumption that the data is i.i.d. is a strong one.

But we need to assume something about what the information inthe

data(x1, y1), . . . , (xn, yn) tells us about(X, Y ).
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Probabilistic Assumptions

4. The functionx 7→ fn(x) = fn(x;X1, Y1, . . . , Xn, Yn) is random,

since it depends on the random dataDn = (X1, Y1, . . . , Xn, Yn).

Thus, the risk

R(fn) = E [ℓ(fn(X), Y )|Dn]

= E [ℓ(fn(X ;X1, Y1, . . . , Xn, Yn), Y )|Dn]

is a random variable. We might aim for ER(fn) small, orR(fn)

small with high probability (over the training data).
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Key Questions

We might choosefn from some classF of functions

(for instance, linear function, sparse linear function, decision tree, neural

network, kernel machine).

There are several questions that we are interested in:

1. Can we design algorithms for whichfn is close to the best that we

could hope for, given that it was chosen fromF? (that is, is

R(fn)− inff∈F R(f) small?)

2. How does the performance offn depend onn? On the complexity of

F? OnP?

3. Can we ensure thatR(fn) approaches the best possible performance

(that is, the infimum over allf of R(f))?
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Statistical Learning Theory vs Classical Statistics

• In this course, we are concerned with results that apply to large

classes of distributionsP , such as the set ofall joint distributions on

X × Y. In contrast to parametric problems, we will not (often)

assume thatP comes from a small (e.g., finite-dimensional) space,

P ∈ {Pθ : θ ∈ Θ}.

• Since we make few assumptions onP , and we are concerned with

high-dimensional data, the goal is typically to ensure thatthe

performance is close to the best we can achieve using prediction rules

from some fixed classF .
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Key Issues

Several key issues arise in designing a prediction method for these

problems:

Approximation How good is the bestf in the classF that we are using?

That is, how close toinff R(f) is inff∈F R(f)?

Estimation How close is our performance to that of the bestf in F?

(Recall that we only have access to the distributionP through

observing a finite data set.)

Computation We need to use the data to choosefn, typically by solving

some kind of optimization problem. How can we do that efficiently?
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Key Issues

• We will not spend much time on the approximation properties,

beyond observing someuniversalityresults (that particular classes

can achieve zero approximation error). (But for complex problems

and simple—hence statistically feasible—function classes, this is not

a very interesting property.)

• We will focus on theestimationissue.

• We will take the approach that efficiency of computation is a

constraint. Indeed, the methods that we spend most of our time

studying involve convex optimization problems. (e.g., kernel

methods involve solving a quadratic program, and boosting

algorithms involve minimizing a convex criterion in a convex set.)
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More General Probabilistic Formulation

We can consider a decision-theoretic formulation: Have

1. Outcome spaceZ.

2. Prediction strategyS : Z∗ → A.

3. Loss functionℓ : A×Z → R.

Protocol:

• See outcomesZ1, . . . , Zn, i.i.d. from unknownP onZ.

• Choose actiona = S(Z1, . . . , Zn) ∈ A.

• Incur risk Eℓ(a, Z).

Aim is to minimize the excess risk, compared to the best decision:

E [ℓ(S(Z1, . . . , Zn), Z)|Zn
1 ]− inf

a∈A
Eℓ(a, Z).

16



More General Probabilistic Formulation

Example: In pattern classificationproblems,

• Z = X × Y,

• A ⊂ YX .

• ℓ(f, (x, y)) = 1[f(x) 6= y].

Example: In density estimationproblems,

• Z = R
d (or some measurable space).

• A = measurable functions onZ (densities wrt a ref-

erence measure onZ).

• ℓ(p, y) = − log p(z).

In this case, if the distributionP has a density inA, the

excess risk is the KL-divergence betweena andP .
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Game Theoretic Formulation

Decision method playsat ∈ A

World revealszt ∈ Z

Incur lossℓ(at, zt)

• Cumulative loss:̂Ln =
n∑

t=1

ℓ(at, zt).

• Aim to minimizeregret, that is, perform well compared to the best (in

retrospect) from some class:

regret=
n∑

t=1

ℓ(at, zt)

︸ ︷︷ ︸

L̂n

− inf
a∈A

n∑

t=1

ℓ(a, zt)

︸ ︷︷ ︸

L∗

n

.

• Data can beadversariallychosen.

18



Game Theoretic Formulation: Motivation

1. Appropriate formulation for online/sequential prediction problems.

2. Adversarial model is often appropriate (e.g., in computer security,
computational finance).

3. Adversarial model assumes little:
It is often straightforward to convert a strategy for an adversarial
environment to a method for a probabilistic environment.

4. Studying the adversarial model can reveal thedeterministic coreof a
statistical problem: there are strong similarities between the
performance guarantees in the two cases.

5. Significant overlaps in the design of methods for the two problems:

• Regularizationplays a central role.

• Often have a natural interpretation as aBayesian method.
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Examples

Example: In an onlinepattern classificationproblem (like

spam classification),

• Z = X × Y,

• A ⊂ YX .

• ℓ(f, (x, y)) = 1[f(x) 6= y].

The action is a classification rule, and the regret indicates

how close the spam misclassification rate is to the best per-

formance possible in retrospect on the particular email se-

quence.
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Example: Portfolio Optimization

• Aim to choose a portfolio (distribution over financial instruments) to
maximize utility.

• Other market players can profit from making our decisions badones.
For example, if our trades have a market impact, someone can
front-run (trade ahead of us).

• The decision method’s actionat is a distribution on them
instruments,at ∈ ∆m = {a ∈ [0, 1]m :

∑

i ai = 1}.

• The outcomezt is the vector of relative price increases,zt ∈ R
m
+ ; the

ith component is the ratio of the price of instrumenti at timet to its
price at the previous time.

• The lossℓ might be the negative logarithm of the portfolio’s increase,

ℓ(at, zt) = − log (at · zt) .
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Example: Portfolio Optimization

• We might compare our performance to the best stock (distribution is

a delta function), or a set of indices (distribution corresponds to Dow

Jones Industrial Average, etc), or the set of all distributions.

• The regret is then the log of the ratio of the maximum value the

portfolio would have at the end (for the best mixture choice)to the

final portfolio value:

n∑

t=1

ℓ(at, zt)−min
a∈A

n∑

t=1

ℓ(a, zt) = max
a∈A

n∑

t=1

log(a·zt)−
n∑

t=1

log(at·zt),

sincea · zt is the relative increase in capital under actiona.
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Key Questions

Often interested in minimax regret, which is the value of thegame:

min
a1

max
z1

· · ·min
an

max
zn

(
n∑

t=1

ℓ(at, zt)−min
a∈A

n∑

t=1

ℓ(a, zt)

)

.

1. How does the performance (minimax regret) depend onn? On the

complexity ofA (andZ)?

2. Can we design computationally efficient strategies that (almost)

achieve the minimax regret?

3. What if the strategy haslimited information? (e.g., auctions, bandits)
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Overview: probabilistic and game-theoretic formulations

• Decision-theoretic formulation:

For outcomeZ, actiona, incur lossℓ(a, Z).

• Probabilistic:

− DataZ1, . . . , Zn, Z i.i.d.,

− Use data to choosea ∈ A,

− Aim to minimize excess risk,

Eℓ(a, Z)− inf
a∗∈A

Eℓ(a∗, Z).
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Overview: probabilistic and game-theoretic formulations

• Online:

− Arbitrary (even adversarial) choice of data.

− Sequential game: at roundt,

∗ Chooseat,

∗ SeeZt,

∗ Incur lossℓ(at, Zt).

− Aim to minimize regret (excess cumulative loss):
∑

t

ℓ(at, Zt)− inf
a∗∈A

∑

t

ℓ(a∗, Zt).
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