Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett
1. Contextual bandits.
Bandits with side information.
Model assumptions versus comparison class.

Woodroofe/Sarkar one-armed bandit with side information.

| X'| distinct bandit problems.

Bandits with expert advice.




Contextual bandits.

Bandits with side information.
Hope that the extra information will allow better decisions
At each round:

SeeX; € X.
Choosel; € {1,...,k}.

Receive reward7, ; € R.




Contextual bandits.

1. Stochastic model:
joint distribution(X,Y) ~ Py, X € X,Y € R,

2. Game theoretic model:
(X,Y) pairs chosen adversarially.

3. Mixture:
e.g.,X fixed design/adversarial; ~ Py x.

Regret and pseudo-regret:

Ftn, = Sl}P Z Yyxoe — Z Yt
t=1 t=1

Rn — Sl}pEZYf(Xt),t — EZYIt,t'

t=1 t=1

wheresup is overcomparison class F' of functionsf : X — {1,...




Contextual bandits.

1. If the comparison clask is all constant mappings

(fi X > {1, k}stjie{l,... .k}, Ve e X, fj(z)=j},

then this is no harder than the multi-armed bandit problem

(depending oq Py}, it might be much easier, because of the extra
iInformation).

2. If Fis all functionsf : X — {1,...,k}, then the aim is to predict,
for eachz, the maximizerj* of j — E|Y;| X = z|.

(@) If X ={1,2,...,m}, then we can view it as: separaté-armed
bandit problems. Th&; tells the strategy which bandit it is
playing. And if{ Py} is such that the distributiol | X gives no
information about’| X', thek-armed bandit problems decouple
In this way.




Contextual bandits.

(b) If X is infinite (andF’ Is all measurable functions
f: X —={1,...,k}), it may be more appropriate to view it as a
pattern classification problem, but with limited infornatiabout the
labels. (In the pattern classification settirfg(x) = j* is called the
Bayes decision rule.)

. If F'is a family of prediction rules (such as linear threshold
functions, or decision trees), then the aim is to accumuabi®st as
much reward as the best of these prediction rules.

. We can also allow’ to be a family ofrandomized functions, that is,
functions that map fronk’ to A, the set of probability distributions
over thek arms. (In that case, we can interpkét x,) , as a random
variable, and we’re typically interested in maximizing #gectation
of the sum of these.)




Contextual bandits.

Two broad approaches:

1. Impose strong constraints @#, }, and aim for optimality (that is,
use an unrestricted comparison class).

(Woodroofe, 1979), (Sarkar, 1991), (Wang, Kulkarni, PQO0O5),
(Abe and Long, 1999), (Auer, 2002), (Li et al, 2010).

2. Impose few constraints dify }, but strong constraints on the

comparison policies.
(Auer et al, 2002), (Dudik et al, 2011), (Agarwal et al, 2014)




Contextual bandits.

(Woodroofe, 1979). Aim to maximize expected total discewditeward,
£ Z VY (x5
t=1
In a Bayesian setting.

Considered a one-armed bandit

E[Yy|X] is known,

(X, Y1 — E[Yp|X]) ~ Py with 6 ~ « (prior ),

with a simple modeF;.




Contextual bandits'

(Sarkar, 1991) extended to the one-parameter exponeaunalyf model:
Y1 — E[Yy| X] has density

f(y|377 ‘9) — €Xp (Q/T(CC, y) - A($7 9)) '

Then (under suitable conditions on the distributionXof the greedy
policy,

I; =arg max E|Y.,|X;, historytot — 1],
t gje{l Xk} Yo | Xy y ]

IS optimal asymptotically (as — 1).
Resolves an ethical dilemma?

Thus, the myopic procedure... fulfills the utilitarian gaal
well as the individualistic one.




|X'| distinct bandit problems'

Suppose that’ = {1,2,...,m}, and we wish to compete with

FW — (. X 5 {1,... k).

We can think of each value of as an index indicating which of the
bandit problems the strategy must play.

Weak constraints on data; comparison class is constramealiseY is
small.




| X'| distinct bandit problems'

There is a simple approach:
runm distinct multi-armed bandit strategies. For instanceflierEXP3
forecaster:

Theorem: Using EXP3 for each of the: bandits gives pseud(b-
regret

R, = sup EZYf(Xt),t — EZYIt,t < 2\/nm/<3 log k.
feRtm) 4 t=1




| X'| distinct bandit problems'

Proof. Recall:

Theorem: Exp3 with parametey = /2 log k/(nk) incurs regre]

R, < \/2nklogk.

Exp3 with parameter, = +/log k/(tk) incurs regret

R,, < 2+/nklogk.

Define the number of rounds of each of tlheseparate bandit problems,

ng =y 1[X; =i].
t=1




|X| distinct bandit problems'

We have

Rn: sup EZ Yf(Xt)t Ylt )
fertm 4

m

= sup ZE Z (Yreiye — Vi)
FERUM i1 X, =i

:Zm)gﬁm 0 Z Wrw = Y0

< Z 2v/n;klog k
< 2¢/klog k\v/m+/n. (Cauchy-Schwarz)




| X'| distinct bandit problems'

Theorem: For any strategy and any, there is an oblivious ad-
versary playing i.i.d. (product of uniform and Bernoullis)

<Xt7Y1,t7 . '7Yk:,t) = {17 s 7m} X {07 1}k

for which




| X'| distinct bandit problems'

Theorem: For any strategy and any, there is an oblivious ad-
versary playing Bernoulli rewards ; € {0, 1} for which

Proof. Recall

— 1
R, > . min{vnk,n}.

Under a uniform choice oK;, E |{i : n; > n/(2m)}| is Q2(m), provided
n = Q(m). For each of thes@(m) (decoupled) games, we incur regret
Q(y/nk/m). In particular, forn > 2m, Pr (n; > n/(2m)) > 1/2, so:




| X'| distinct bandit problems'

Rn — Sup EZ (Yf(Xt),t - YIt,t)
fertm

m

= sup » B Y (Ve — Vi)
X, =i




Bandits with expert advice.

Consider another setting where we impose only weak congdran the
process generating the data (we allow it to be adversabiat ) constrain

the comparison class by making it small, say cardindlity\We can even
Ignore the contexX;, and rely only on the ‘expert advice’ provided by
functions in the comparison class. This is the settinganidits with

expert advice. We'll allow the comparison class to be distributions over
the k arms. And we’ll allow the choice of advice to be adversarial.




Banditswith expert advice'

Repeated game:
1. Adversary chooses rewarQ ¢, ..., Ykt )-
2. Adversary presents expert advige. .., N € Ay.
3. Strategy chooses the distribution/pf
4. Strategy receives rewayd, ;.

Aim to minimize psuedo-regret,

mn mn
R D ILTTE i
t=1 t=1




Bandits with expert advice.

We could treat each expert as an arm and use Exp3. This wouddgi
distribution over experts in each round, and we could playitkluced
distribution over arms. By treating it as a random choicexpiest, we
can view the loss we observe as the loss of the chosen expéed a
regret bound 0O (v/nNlog N).

If k& is large compared t&V (many arms, few experts), this is a reasonabje
approach. But if not, a better regret is possihﬂ)e(\/nk log N). Thus, it
IS possible to compete with a much larger family of experts.
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Bandits with expert advice.

The strategy corresponds to using Exp3 over experts, bupebing the
estimates of the experts losses from the (known) experiluisbns.
Computing expectations under tflﬁ rather than using an unbiased

estimate, saves some variance: Kheterm comes from the bound on
the second moment of the estimated losses (it would-¥é&Vaf we used
the estimate), whereas thg N term comes from the initial value of the
potential function.




Bandits with expert advice.

Recall:

Strategy Exp3
setp; uniformon{1,..., k}.
fort =1,2,...,n, choosel; ~ p;, observe/y, ;.




Bandits with expert advice.

Strategy Exp4

setq; uniformon{1,..., N}.

fort =1,2,...,n,observet}, ... &N € Ay;
choosel; ~ p;, wherep; ; = E;,,&/,; observely, ;.

Uit

— 1|1 1], Yjt =
Dit [t ] 7t

qdjt+1 =




Banditswith expert advice.

Theorem: Exp4 with parameten incurs regret

log N
_—

R, < +

— nnk
2

Choosing) = /2log N/(nk) givesR,, < \/2nklog N.
(And choosingy; = \/log N/(tk) givesR,, < 2v/nklog N.)




Bandits with expert advice.

Proof. The regret is
En = mlHEZ <€It,t - E]nggf,t> .
J t=1 '

We have

rot = Erepre = EingBrogylre = Eing, Ut

Yjt = ijéigf,t — EItNPtEINSzKIat — EIthtyjat'

Ezyj,t — EZEItNPt [gj,t| Ila SR It—l] — E)N/j,n
t=1 t=1




Banditswith expert advice'

N2
E g g?],t =Ej~q <EI~£{€I¢)

07,4
S EJthE[NSJEI t — E]Nptfl ;= — Tty

PI, .t

Hence, as in the argument for Exp3, we exploit the one-sided
sub-Gaussian behavior 9f> 0 to show that, for any,

1D Zf[t,t =K ZEJthgJ,t
t=1 =

= EZ nEJth?JJt +

log N -
=S L EY;

J,n




