
Theoretical Statistics. Lecture 5.
Peter Bartlett

1. U-statistics.
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Outline of today’s lecture

We’ll look at U-statistics, a family of estimators that includes many

interesting examples. We’ll study their properties: unbiased, lower variance,

concentration (via an application of the bounded differences inequality),

asymptotic variance, asymptotic distribution. (See Chapter 12 of van der

Vaart.)

First, we’ll consider the standard unbiased estimate of variance—a special

case of a U-statistic.
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Variance estimates
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Variance estimates

This is unbiased for i.i.d. data:
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U -statistics

Definition: A U -statistic of order r with kernel h is

U =
1
(

n
r

)

∑

i⊆[n]

h(Xi1 , . . . , Xir),

whereh is symmetric in its arguments.

[If h is not symmetric in its arguments, we can also average over

permutations.]

“U” for “unbiased.” Introduced by Wassily Hoeffding in the 1940s.
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U -statistics

Theorem: [Halmos] θ (parameter, i.e., function defined on a family of

distributions) admits an unbiased estimator (ie: for all sufficiently largen,

some function of the i.i.d. sample has expectationθ) iff for somek there is

anh such that

θ = Eh(X1, . . . , Xk).

Necessity is trivial. Sufficiency uses the estimator

θ̂(X1, . . . , Xn) = h(X1, . . . , hk).

U -statistics make better use of the sample than this, since they are a

symmetric function of the data.
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U -statistics: Examples

• s2n is aU -statistic of order2 with kernelh(x, y) = (1/2)(x− y)2.

• X̄n is aU -statistic of order1 with kernelh(x) = x.

• The U-statistic with kernelh(x, y) = |x− y| estimates themean

pairwise deviationor Gini mean difference.

[The Gini coefficient, G = E|X − Y |/(2EX), is commonly used as a

measure of income inequality.]

• Third k-statistic,

k3 =
n

(n− 1)(n− 2)

n
∑

i=1

(Xi − X̄n)
3

is aU -statistic that estimates the 3rd cumulant.
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U -statistics: Examples

• The U-statistic with kernelh(x, y) = (x− y)(x− y)T estimates the

variance-covariance matrix.

• Kendall’sτ : For a random pairP1 = (X1, Y1), P2 = (X2, Y2) of

points in the plane,

τ = Pr(P1P2 has positive slope)− Pr(P1P2 has negative slope)

= E (1[P1P2 has positive slope]− 1[P1P2 has negative slope]) ,

whereP1P2 is the line fromP1 to P2. It is a measure of correlation:

τ ∈ [−1, 1], τ = 0 for independentX, Y , τ = ±1 for Y = f(X) for

monotonef . Clearly,τ can be estimated using aU -statistic of order2.
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U -statistics: Examples

The Wilcoxon one-sample rank statistic:

T+ =
n
∑

i=1

Ri1[Xi > 0],

whereRi is the rank (position when|X1|, . . . , |Xn| are arranged in

ascending order). It’s used to test if the distribution is symmetric about zero.

Assuming the|Xi| are all distinct, then we can write

Ri =
n
∑

j=1

1[|Xj | ≤ |Xi|],
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U -statistics: Examples

Hence
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U -statistics: Examples

where

h2(Xi, Xj) =

(

n

2

)

1[Xi +Xj > 0],

h1(Xi) = n 1[Xi > 0].

So it’s a sum of U-statistics.

[Why is it not a U-statistic?]
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Properties ofU -statistics

• “U” for “unbiased”: U is an unbiased estimator forEh(X1, . . . , Xr):

EU = Eh(X1, . . . , Xr).

• U is a lower variance estimate thanh(X1, . . . , Xr), becauseU is an

average over permutations. Indeed, sinceU is an average over

permutationsπ of h(Xπ(1), . . . , Xπ(r)), we can write

U(X1, . . . , Xn) = E
[

h(X1, . . . , Xr)|X(1), . . . , X(n)

]

,

where(X(1), . . . , X(n)) is the data in some sorted order. Thus, for

EU = θ, we can write the variance as:
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Properties ofU -statistics

E(U − θ)2 = E
(

E[h(X1, . . . , Xr)− θ|X(1), . . . , X(n)]
)2

≤ EE
[

(h(X1, . . . , Xr)− θ)2|X(1), . . . , X(n)

]

= E(h(X1, . . . , Xr)− θ)2,

by Jensen’s inequality (for a convex functionφ, we have

φ(EX) ≤ Eφ(X)).

This is the Rao-Blackwell theorem: the mean squared error ofthe estimator

h(X1, . . . , Xr) is reduced by replacing it by its conditional expectation,

given the sufficient statistic(X(1), . . . , X(n)).
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Recall: Bounded Differences Inequality

Theorem: Supposef : Xn → R satisfies the followingbounded differ-
ences inequality:
for all x1, . . . , xn, x

′
i ∈ X ,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ Bi.

Then

P (|f(X)−Ef(X)| ≥ t) ≤ 2 exp

(

−
2t2

∑

i B
2
i

)

.
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Bounded Differences Inequality

Consider a U-statistic of order 2.

U =
1
(

n
2

)

∑

i<j

h(Xi, Xj).

Theorem: If |h(X1, X2)| ≤ B a.s., then

P (|U − EU | ≥ t) ≤ 2 exp(−nt2/(8B2)).
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Bounded Differences Inequality

Proof:

ForX,X ′ differing in a single coordinate, we have

|U − U ′| ≤
1
(

n
2

)

∑

i<j

|h(Xi, Xj)− h(X ′
i, X

′
j)|

≤
2B(n− 1)

(

n
2

)

=
4B

n
.

The bounded differences inequality implies the result.
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Variance of U-statistics

Now we’ll compute the asymptotic variance of a U-statistic.Recall the
definition:

U =
1
(

n
r

)

∑

i⊆[n]

h(Xi1 , . . . , Xir),

So [lettingS, S′ range over subsets of{1, . . . , n} of sizer]:
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(

n
r

)(

r
c

)(
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)

is the number of ways of choosingS andS′ with an
intersection of sizec (first chooseS, then choose the intersection fromS,
then choose the non-intersection for the rest ofS′).
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Variance of U-statistics

Also, ζc = Cov(h(XS), h(XS′)) depends only onc = |S ∩ S′|. To see this,

suppose thatS ∩ S′ = I with |I | = c,

ζc = Cov(h(XS), h(XS′))

= Cov(h(XI , XS−I), h(XIXS′−I))
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Clearly,ζ0 = 0.
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Variance of U-statistics

Now,
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Variance of U-statistics

So if ζ1 6= 0, the first term dominates:

nVar(U) →
nr!(n− r)!r(n− r)!

n!(r − 1)!(n− 2r + 1)!
ζ1 → r2ζ1.

If r2ζ1 = 0, we say thatU is degenerate.
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