Theoretical Statistics. Lecture 2.
Peter Bartlett

1. Review: Stochastic convergence.

2. Asymptotics.

3. Concentration inequalities.




‘ Review. Relating Convergence Propertie‘

Theorem:

X, ~ X andd(X,,Y,) 5 0 =Y, ~ X,

X, ~ X andY,, ~ ¢ = (X,,,Y,) ~ (X, ¢),

X, 5 XandY, 5 Y = (X,,Y,) & (X,Y).




Review. Relating Convergence Properties: Continuous May

Supposef : R¥ — R™ is “almost surely continuous”
(i.e., for someS with P(X € S)=1, f is continuous ord).

Theorem: [Continuous mapping]

X, X = f(X,) ~ f(X).

Xn 5 X = f(X,) = f(X).
Xn = X = f(X,) = f(X).




Review. Relating Convergence Properties: Slutsky’s Lemmj

Theorem: X, ~~ X andY,, ~» cimply

X, +Y,~ X +e,
Y, X, ~ cX,
Y X, ~ et X




Review. Showing Convergence in Distributio:'

Recall that thesharacteristic function demonstrates weak convergence:
X, ~ X <= Eet Xn 5 Eet' X forallt € R*.

Theorem: [Lévy’s Continuity Theorem]
If Eeit’ Xn o(t) for all t in R*, and¢ : R* — C is continuous ab,
thenX,, ~ X, whereEe! X = ¢(¢).




Review. Uniformly tight I

Definition:
X Istight means that for at > 0 there is an\/ for which

P(|X]| > M) < e.

{X,} is uniformly tight (or bounded in probability) means that for al
e > 0 there is anM for which

sup P(|| X,|| > M) < e.




‘Review. Notation: Uniformly tight I

Theorem: [Prohorov’s Theorem]

1. X, ~ X implies{X, } is uniformly tight.

2. {X,} uniformly tight implies that for som& and some subsequen;
Xp,; ~ X,




Review. Notation for rates: op, Op I

Definition:

X, =op(l) =X, 5o,

X, =o0p(R,) =X, =Y,R, andY,, = op(1).

= Op(1) <= X,, uniformly tight
Op(R,) =X, =Y,R, andY,, = Op(1).




\ Review. Relations between rate'

op(1l) +op(1)
op(1) 4+ Op(1)
)

op(1)Op(1
(1+op(1))”
op(Op(1))

Xn =0, R(h) = o(||n[|?)

X, 0, R(h) = O(|[h]")

op(1).
Op(1).

op(1).
Op(1).
op(1).
R(X,) =
R(X,) =

op([[Xnl?)-

Op (1 Xn]l?)-




‘ Outline of the rest of today’s Iecture'

Often we would like bounds on tail probabilities lik&T,, > ¢) for some
statisticT,,. We could consider asymptotic results—Iike the centraitlim
theorem:

lim P(X, > p+oynt)=1— d(t).

n—oo

This tells us what happens asymptotically, but we usuaNselzafixed
sample size. What can we say in that case? For example, what is

P(X, > pu+e?

In this lecture, we look atleviation inequalities, i.e., bounds on this kind
of probability of deviation. We need to exploit informatiabout the
random variables.

1. Using moment bounds:
Markov (first), Chebyshev (second)
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2. Using moment generating function bounds, for sums ofpeddent

I.V.S:
Chernoff; Hoeffding; sub-Gaussian, sub-exponential oam&ariables;

Bernstein.

3. Martingale methods:
Hoeffding-Azuma, bounded differences.
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Markov’s Inequality I

Theorem: ForX > 0a.s.EX < oo,t > 0:
EX

P(X>1t) <

EX = /XdP
2/ rdP(x)
t
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Moment Inequalities'

Considerl X — EX| in place ofX.

Theorem: For EX < oo, f : [0,00) — [0,00) strictly monotonic,
Ef(|X —EX]|) <oo,t > 0:
P(X —EX| > ) = P(f(|IX - EX| > f(t))
_ Ef(|X - EX|)
N f(t)

e.g.,f(a) = a? givesChebyshev’s inequality:
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Theorem:

e.g.,f(a) = a”:

Theorem:
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Chernoff bounds'

Usea — exp(Aa) for A > 0:

Theorem: ForEX < oo, Eexp(A(X — EX)) < oo, > 0:

P(X —EX >t)=P(exp(AM(X —EX)) > exp(At))

_ Eexp(A(X — EX))
- exp(At) '

Mx_,(A) = Eexp(AM(X — p)) (for p = EX) is themoment-generating
function of X — L.
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Chernoff bounds'

log P(X — > 1) < inf (=l +log Mx ()
>

= —sup (At —log Mx_,,(\))
A>0

— _Iv—ki-< )7

wherel'(\) = log Mx_, () is thecumulant generating function of
X — u,

(A = log Mx_,(A\) if A>0,
i 00 otherwise,

andI™_Is theconvex conjugateof I'_:

I (1) = sup (M =T (1))
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