
Theoretical Statistics. Lecture 21.
Peter Bartlett

1. Motivation: Asymptotics of tests

2. Recall: Contiguity

3. Le Cam’s lemmas. [vdV6]
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Motivating example: asymptotic testing

Consider the asymptotics of a test. We have

• A parametric modelPθ for θ ∈ Θ.

• A null hypothesisθ = θ0.

• An alternative hypothesisθ = θ0 + h.

Test: compute the log likelihood ratio,

λ = log
n
∏

i=1

dPθ0+h(Xi)

dPθ0(Xi)
,

and reject the null hypothesis if it is sufficiently large.
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Asymptotic testing

For a fixed alternative, this typically has trivial asymptotics. For example,

supposePθ = N(θ, σ2). Then

λ = log
n
∏

i=1

dPθ0+h

dPθ0

(Xi)

=
1

2σ2

n
∑

i=1

(

(Xi − θ0)
2 − (Xi − θ0 − h)2

)

=
1

2σ2

n
∑

i=1

(2h(Xi − θ0)− h2)

=
nh

σ2
(X̄ − θ0)−

nh2

2σ2
.
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Asymptotic testing

Under the null hypothesis,̄X ∼ N(θ0, σ
2/n), so the log likelihood ratio is

λ
θ0∼ N

(

−nh2

2σ2
,
nh2

σ2

)

.

[Notice that the mean is half the negative variance!]

Clearly (consider, for example, Chebyshev’s inequality),for a fixedh 6= 0,

we haveλ
P→ −∞ (that is, for allc, Pr(λ < c) → 1). So the asymptotics

are rather trivial: asymptotically, we do not reject the null hypothesis.
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Asymptotic testing

Consider instead a shrinking alternative: Replaceh with hn → 0. Then

λ = log
n
∏

i=1

dPθ0+hn

dPθ0

(Xi)

=
nhn

σ2
(X̄ − θ0)−

nh2
n

2σ2

θ0∼ N

(

−nh2
n

2σ2
,
nh2

n

σ2

)

.

So for
√
nhn → h 6= 0, its parameters approach(−h2/(2σ2), h2/σ2).

And providedh2/(2σ2) ≫ h/σ (that is,h/(2σ) ≫ 1, or

hn/(2σ) ≫ n−1/2), we do not reject the null hypothesis.
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Asymptotic testing

These asymptotics are typical. Another example: The exponential family
with sufficient statisticT has densitypθ(x) = exp (T (x)θ − A(θ)). We
have

λ = log
n
∏

i=1

dPθ0+hn

dPθ0

(Xi)

= hn

n
∑

i=1

T (Xi)− n (A(θ0 + hn)−A(θ0))

= hn

n
∑

i=1

T (Xi)− n

(

A′(θ0)hn +
1

2
A′′(θ0)h

2
n + o(h2

n)

)

= hn

n
∑

i=1

(T (Xi)− Pθ0T (Xi))−
n

2
A′′(θ0)h

2
n + o(nh2

n).
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Asymptotic testing

So if hn = h/
√
n, andT (Xi) has finite variance, then we have

λ =
h√
n

n
∑

i=1

(T (Xi)− Pθ0T (Xi))−
h2

2
A′′(θ0) + o(1)

θ0∼ N

(

−h2 var(T (X1))

2
, h2 var(T (X1))

)

.
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Contiguity

For these examples, the distributions are absolutely continuous wrt each

other. In general, we need to make sure that thelikelihood ratios

dQn

dPn

make sense (at least asymptotically). We need an analogous asymptotic

condition to absolute continuity (P (A) = 0 only if Q(A) = 0): contiguity.
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Recall: Absolute Continuity

Definition:

1. Q ≪ P (“Q is absolutely continuouswrt P ”) means∀A,

P (A) = 0 =⇒ Q(A) = 0.

2. P ⊥ Q (“P andQ areorthogonal”) means∃ΩP ,ΩQ,

P (ΩP ) = 1, Q(ΩP ) = 0,

Q(ΩQ) = 1, P (ΩQ) = 0.
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Recall: Absolute Continuity

Suppose thatP andQ have densitiesp andq wrt some measureµ. Define

Qa(A) = Q (A ∩ {p > 0}) , Q⊥(A) = Q (A ∩ {p = 0}) .

Lemma:

1. Q = Qa +Q⊥, with Qa ≪ P andQ⊥P (Lebesgue decomposition)

2. Qa(A) =

∫

A

q

p
dP

(

=

∫

A

dQ

dP
dP

)

.

3. Q ≪ P ⇔ Q = Qa ⇔ Q(p = 0) = 0 ⇔
∫

q

p
dP = 1.

If Q ≪ P thenQf(X) = P

(

f(X)
dQ

dP

)

.
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Contiguity

Definition: Qn ⊳ Pn (“Qn is contiguous wrtPn”) means,∀An,

Pn(An) → 0 =⇒ Qn(An) → 0.

11



Contiguity: Examples

Example:

1. Pn = N(0, 1), Qn = N(µn, σ
2) with σ2 > 0 andµn → µ ∈ R.

ThenQn ⊳ Pn andPn ⊳ Qn.

2. Pn = N(0, 1), Qn = N(µn, σ
2) with σ2 > 0 andµn → ∞.

ThenAn = [µn, µn + 1] shows that we do not haveQn ⊳ Pn.

(But notice that we haveQn ≪ Pn for all n.)

3. Pn is uniform on[0, 1], Qn is uniform on[θ0n, θ
1
n], θ

0
n < θ1n, θ0n → 0,

θ1n → 1.

ThenPn ⊳ Qn andQn ⊳ Pn.

(But notice that we have neitherPn ≪ Qn norQn ≪ Pn.)
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Contiguity

Lemma: [Le Cam’s first lemma] The following are equivalent:

1. Qn ⊳ Pn.

2.
dPn

dQn

Qn

 U along a subsequence=⇒ P (U > 0) = 1.

3.
dQn

dPn

Pn

 V along a subsequence=⇒ EV = 1.

4. Tn
Pn→ 0 =⇒ Tn

Qn→ 0.
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Contiguity

Notice that
dPn

dQn
,
dQn

dPn
are non-negative and

EPn

dQn

dPn
≤ 1, EQn

dPn

dQn
≤ 1.

So the likelihood ratios are uniformly tight, and thereforehave a weakly

converging subsequence (Prohorov’s theorem). Le Cam’s first lemma shows

that the limits characterize contiguity. These characterizations are

analogous to the characterizations we saw for absolute continuity:

Q ≪ P ⇔ Q

(

dP

dQ
= 0

)

= 0 ⇔ EP
dQ

dP
= 1.
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Aside: Recall normal asymptotic testing

ForPθ = N(θ, σ2),

λ = log

n
∏

i=1

dPθ0+hn
(Xi)

dPθ0(Xi)

=
nhn

σ2
(X̄ − θ0)−

nh2
n

2σ2

θ0∼ N

(

−nh2
n

2σ2
,
nh2

n

σ2

)

.

And for
√
nhn → h 6= 0, its parameters approach(−h2/(2σ2), h2/σ2).
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Contiguity

Here is an important example.Local asymptotic normality: log likelihood

ratio of local alternative to true parameter is asymptotically normal.

Example: Suppose

log
dPn

dQn

Qn

 N(µ, σ2).

Then
dPn

dQn

Qn

 U implies U = exp(N(µ, σ2)) > 0, so part (2) of the

lemma shows thatQn ⊳ Pn.

Conversely, part (3) of the lemma shows thatPn ⊳ Qn iff

E exp(N(µ, σ2)) = 1.
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Contiguity

Example: (Continued)
This is true iff

1 =
1√
2πσ2

∫

exp

(

x− (x− µ)2

2σ2

)

dx

=
1√
2πσ2

∫

exp

(

− (x− (µ+ σ2))2

2σ2

)

dx exp

(

(µ+ σ2)2 − µ2

2σ2

)

,

which is equivalent toµ = −σ2/2.

(Alternatively, E exp(Z) = MZ(1) for Z ∼ N(µ, σ2). And MZ(t) =

exp(µt+ σ2t/2), soMZ(1) = 1 for µ = −σ2/2.)
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Contiguity

Example: (Continued)
That is, for

log
dPn

dQn

Qn

 N(µ, σ2),

Pn ⊳ Qn iff µ = −σ2/2.
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Contiguity and change of measure

Recall that, ifQ ≪ P then we can write theQ-law of X in terms of the

P -law of the pair(X, dQ/dP ).

Le Cam’s third lemma shows an asymptotic version:

If Qn is contiguous wrtPn, then we can write the limit of theQn-law of a

weakly converging random variableXn in terms of the limit of thePn-law

of the pair(Xn, dQn/dPn).
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Contiguity and change of measure

Theorem: [Le Cam’s third lemma] If Qn ⊳ Pn and
(

Xn,
dQn

dPn

)

Pn

 (X,V ),

then we can writeXn
Qn

 L where the distributionL satisfies

ELf = Ef(X)V,

L(X ∈ A) = E [1[X ∈ A]V ] =

∫

A×R

v dPX,V (x, v).
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Contiguity and change of measure

Corollary: Suppose, forXn ∈ R
k,

(

Xn, log
dQn

dPn

)

Pn

 N









µ

−σ2

2



 ,





Σ τ

τT σ2







 .

ThenXn
Qn

 N(µ+ τ,Σ).

Think of Xn as some test statistic, which approaches a normal underPn.
Think of Qn as an alternative distribution, for which the asymptotic
distribution of the log likelihood ratio is normal, withµ = −σ2/2. Under
the alternative distributionQn, the asymptotic distribution of the statistic
Xn also approaches a normal, but with the variance shifted by the limiting
covariance betweenXn andlog(dQn/dPn) underPn.
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Contiguity and change of measure: Proof

Let (X,Z) have the limiting distribution, so
(

Xn, log
dQn

dPn

)

Pn

 (X,Z),

hence
(

Xn,
dQn

dPn

)

Pn

 (X, exp(Z)).

BecauseZ ∼ N(−σ2/2, σ2), Qn ⊳ Pn. By Le Cam’s lemma,Xn
Qn

 L,

where
∫

f(x)L(dx) = Ef(X) exp(Z).
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Contiguity and change of measure: Proof

Thus, the characteristic function ofL is

φL(t) = E exp(itTX + Z)

= φX,Z









t

−i







 ,

But the normal distribution of(X,Z) implies its characteristic function is

φX,Z









t

u







 = exp



itTµ− iuσ2

2
− 1

2

(

tT u
)





Σ τ

τT σ2









t

u







 .
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Contiguity and change of measure: Proof

Substituting gives

φL(t) = exp

(

itT (µ+ τ)− 1

2
tTΣt

)

,

which implies thatL is N(µ+ τ,Σ).
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