Theoretical Statistics. Lecture 12. Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

- 1. Metric entropy.
- 2. Canonical Rademacher and Gaussian processes

Recall: Covering numbers

A **pseudometric** is like a metric, but we don't insist that d(x, y) = 0implies x = y.

Definition: An ϵ -cover of a subset T of a pseudometric space (S, d) is a set $\hat{T} \subset T$ such that for each $t \in T$ there is a $\hat{t} \in \hat{T}$ such that $d(t, \hat{t}) \leq \epsilon$. The ϵ -covering number of T is

 $N(\epsilon, T, d) = \min\{|\hat{T}| : \hat{T} \text{ is an } \epsilon \text{-cover of } T\}.$

A set T is **totally bounded** if, for all $\epsilon > 0$, $N(\epsilon, T, d) < \infty$. The function $\epsilon \mapsto \log N(\epsilon, T, d)$ is the **metric entropy** of T. If $\lim_{\epsilon \to 0} \log N(\epsilon) / \log(1/\epsilon)$ exists, it is called the **metric dimension**. **Covering numbers**

Intuition: A *d*-dimensional set has metric dimension *d*. $(N(\epsilon) = \Theta(1/\epsilon^d).)$ Example: $([0, 1]^d, l_{\infty})$ has $N(\epsilon) = \Theta(1/\epsilon^d).$

Packing numbers

Definition: An ϵ -packing of a subset T of a pseudometric space (S, d) is a subset $\hat{T} \subset T$ such that each pair $s, t \in \hat{T}$ satisfies $d(s, t) > \epsilon$. The ϵ -packing number of T is

 $M(\epsilon, T, d) = \max\{|\hat{T}| : \hat{T} \text{ is an } \epsilon \text{-packing of } T\}.$

Covering and packing numbers

Theorem: For all $\epsilon > 0$, $M(2\epsilon) \le N(\epsilon) \le M(\epsilon)$.

Thus, the scaling of the covering and packing numbers is the same.

Covering and packing numbers: Proof

For the first inequality, consider a minimal ϵ -cover \hat{T} . Any two elements of a 2ϵ -packing of T cannot be within ϵ of the same element of \hat{T} . (Otherwise, the triangle inequality shows that they are within 2ϵ of each other.) Thus, there can be no more than one element of a 2ϵ packing for each of the $N(\epsilon)$ elements of \hat{T} . That is, $M(2\epsilon) \leq N(\epsilon)$.

For the second inequality, consider an ϵ -packing \hat{T} of size $M(\epsilon)$. Since it is maximal, no other point $s \in T$ can be added for which some $t \in \hat{T}$ has $d(s,t) > \epsilon$. Thus, \hat{T} is an ϵ -cover. So the minimal ϵ -cover has size $N(\epsilon) \leq M(\epsilon)$.

Covering and packing numbers: Example

Theorem: Let $\|\cdot\|$ be a norm on \mathbb{R}^d and let *B* be the unit ball. Then

$$\frac{1}{\epsilon^d} \le N(\epsilon, B, \|\cdot\|) \le \left(\frac{2}{\epsilon} + 1\right)^d$$

Covering and packing numbers of a norm ball: Proof

Lower bound: Consider an ϵ -cover $\{x_1, \ldots, x_N\}$ of size $N = N(\epsilon, B)$, and notice that

$$B \subseteq \bigcup_{i=1}^{N} (x_i + \epsilon B),$$

so $\operatorname{vol}(B) \leq N(\epsilon, B) \operatorname{vol}(\epsilon B) = N(\epsilon, B) \epsilon^d \operatorname{vol}(B),$

and hence $N(\epsilon, B) \geq 1/\epsilon^d$.

Covering and packing numbers of a norm ball: Proof

Upper bound: Consider a maximal ϵ -packing $\{x_1, \ldots, x_M\}$ of size $M = M(\epsilon, B)$. Since it's a packing, the balls $x_i + (\epsilon/2)B$ are disjoint. Each of these balls is contained in $(1 + \epsilon/2)B$. Thus,

$$\bigcup_{i=1}^{M} \left(x_i + \frac{\epsilon}{2} B \right) \subseteq (1 + \epsilon/2) B,$$
so
$$M \operatorname{vol}((\epsilon/2)B) \leq \operatorname{vol}((1 + \epsilon/2)B)$$

$$M \left(\frac{\epsilon}{2}\right)^d \operatorname{vol}(B) \leq \left(1 + \frac{\epsilon}{2}\right)^d \operatorname{vol}(B).$$

and hence $N(\epsilon, B) \leq M(\epsilon, B) \leq (2/\epsilon + 1)^d$.

Example: smoothly parameterized functions

Let F be a parameterized class of functions,

$$F = \{ f(\theta, \cdot) : \theta \in \Theta \}.$$

Let $\|\cdot\|_{\Theta}$ be a norm on Θ and let $\|\cdot\|_F$ be a norm on F. Suppose that the mapping $\theta \mapsto f(\theta, \cdot)$ is *L*-Lipschitz, that is,

 $||f(\theta, \cdot) - f(\theta', \cdot)||_F \le L ||\theta - \theta'||_{\Theta}.$

Then $N(\epsilon, F, \|\cdot\|_F) \leq N(\epsilon/L, \Theta, \|\cdot\|_{\Theta}).$

Example: smoothly parameterized functions

A Lipschitz parameterization allows us to translates a cover of the parameter space into a cover of the function space.

Example: If F is smoothly parameterized by a (compact set of) d parameters, then $N(\epsilon, F) = O(1/\epsilon^d)$.

Example: 1-dimensional Lipschitz functions

Let F be the set of L-Lipschitz functions mapping from [0, 1] to [0, 1]. Then in the infinity norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$,

 $\log N(\epsilon, F, \|\cdot\|_{\infty}) = \Theta(L/\epsilon).$

Proof idea: form an ϵ grid of the y-axis, and an ϵ/L grid of the x-axis, and consider all functions that are piecewise linear on this grid, where all pieces have slopes +L or -L. There are $1/\epsilon$ starting points, and for each starting point there are $2^{L/\epsilon}$ slope choices. It's easy to show that this set is an $O(\epsilon)$ packing and an $O(\epsilon)$ cover.

Example: *d***-dimensional Lipschitz functions**

Let F_d be the set of *L*-Lipschitz functions (wrt $\|\cdot\|_{\infty}$) mapping from $[0, 1]^d$ to [0, 1]. Then

$$\log N(\epsilon, F_d, \|\cdot\|_{\infty}) = \Theta\left((L/\epsilon)^d\right).$$

Note the *exponential* dependence on the dimension.

Canonical Rademacher and Gaussian Processes

Definition: A stochastic process $\theta \mapsto X_{\theta}$ with indexing set T is sub-Gaussian with respect to a metric d on T if, for all $\theta, \theta' \in T$ and all $\lambda \in \mathbb{R}$,

$$\mathbf{E}\exp\left(\lambda(X_{\theta} - X_{\theta'})\right) \le \exp\left(\frac{\lambda^2 d(\theta, \theta')^2}{2}\right)$$

The canonical Rademacher and Gaussian processes are sub-Gaussian wrt the Euclidean metric.

Canonical Rademacher and Gaussian Processes

Indeed:

$$G_{\theta} - G_{\theta'} = \langle g, \theta - \theta' \rangle,$$

which is $N(0, \|\theta - \theta'\|^2)$, and hence its moment generating function is equal to the upper bound.

$$R_{\theta} - R_{\theta'} = \langle \epsilon, \theta - \theta' \rangle,$$

which, by the bounded differences property, is sub-Gaussian with parameter $\|\theta - \theta'\|^2$.

An aside: Orlicz norms

Definition: For $1 \le \alpha \le 2$, the α -Orlicz norm of a random variable X is

$$\|X\|_{\psi_{\alpha}} = \inf\left\{C > 0 : \mathbf{E}\exp\left(\frac{|X|^{\alpha}}{C^{\alpha}}\right) \le 2\right\}$$

Theorem: There are constants c_1, c_2 such that, for all X and all $t \ge 1$,

$$\Pr(|X| \ge t) \le 2 \exp\left(-c_1 \frac{t^{\alpha}}{\|X\|_{\psi_{\alpha}}^{\alpha}}\right),$$

and conversely, $\Pr(|X| \ge t) \le c \exp(-t^{\alpha}/K^{\alpha})$ implies $||X||_{\psi_{\alpha}} \le c_2 K$.

Sub-Gaussian means $||X_{\theta} - X'_{\theta}||_{\psi_2} \leq Ld(\theta, \theta').$

Canonical Gaussian and Rademacher processes

Theorem: For $T \subseteq \mathbb{R}^n$,

$$\mathbf{E}\sup_{\theta\in T} R_{\theta} \leq \sqrt{\frac{\pi}{2}} \mathbf{E}\sup_{\theta\in T} G_{\theta} \leq c\sqrt{\log n} \mathbf{E}\sup_{\theta\in T} R_{\theta}.$$

Canonical Gaussian and Rademacher processes

Proof of first inequality:

$$\mathbf{E} \sup_{\theta \in T} G_{\theta} = \mathbf{E} \sup_{\theta \in T} \sum_{i=1}^{n} g_{i} \theta_{i}$$
$$= \mathbf{E} \sup_{\theta \in T} \sum_{i=1}^{n} \epsilon_{i} |g_{i}| \theta_{i}$$
$$\geq \mathbf{E} \sup_{\theta \in T} \sum_{i=1}^{n} \epsilon_{i} \mathbf{E} [|g_{i}|] \theta_{i}$$
$$= \sqrt{\frac{2}{\pi}} \mathbf{E} \sup_{\theta \in T} R_{\theta}.$$

Canonical Gaussian and Rademacher processes: Example

For Θ the l_1 -ball in \mathbb{R}^n ,

$$\mathbf{E}\sup_{\theta} \langle \epsilon, \theta \rangle = \mathbf{E} \| \epsilon \|_{\infty} = 1.$$

[where we've used the duality of ℓ_1 and ℓ_∞ (equivalently, that Hölder's inequality is tight).] Also,

$$\mathbf{E}\sup_{\theta}\langle g,\theta\rangle = \mathbf{E}\|g\|_{\infty} \leq \sqrt{2\ln n}.$$

The Gaussian and Rademacher complexities are a $\sqrt{\log n}$ factor apart in this case.

Canonical Gaussian and Rademacher processes: Example

Proof:

$$\exp\left(\lambda \mathbf{E} \max_{a \in A} \langle g, a \rangle\right) \leq \mathbf{E} \exp\left(\lambda \max_{a \in A} \langle g, a \rangle\right)$$
$$= \mathbf{E} \max_{a \in A} \exp\left(\lambda \langle g, a \rangle\right)$$
$$\leq \sum_{a \in A} \mathbf{E} \exp\left(\lambda \langle g, a \rangle\right)$$
$$\leq |A| \exp\left(\lambda^2 R^2/2\right),$$

since g_i is sub-gaussian (here, $R^2 = \max_{a \in A} ||a||_2^2$). Picking $\lambda^2 = 2 \log |A|/R^2$ gives the result.