
Theoretical Statistics. Lecture 12.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

1. Metric entropy.

2. Canonical Rademacher and Gaussian processes
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Recall: Covering numbers

A pseudometricis like a metric, but we don’t insist thatd(x, y) = 0

impliesx = y.

Definition: An ǫ-cover of a subsetT of a pseudometric space(S, d) is a set

T̂ ⊂ T such that for eacht ∈ T there is ât ∈ T̂ such thatd(t, t̂) ≤ ǫ. The

ǫ-covering number ofT is

N(ǫ, T, d) = min{|T̂ | : T̂ is anǫ-cover ofT}.

A setT is totally bounded if, for all ǫ > 0, N(ǫ, T, d) < ∞.

The functionǫ 7→ logN(ǫ, T, d) is themetric entropy of T .

If limǫ→0 logN(ǫ)/ log(1/ǫ) exists, it is called themetric dimension.
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Covering numbers

Intuition: A d-dimensional set has metric dimensiond. (N(ǫ) = Θ(1/ǫd).)

Example:([0, 1]d, l∞) hasN(ǫ) = Θ(1/ǫd).
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Packing numbers

Definition: An ǫ-packing of a subsetT of a pseudometric space(S, d) is

a subsetT̂ ⊂ T such that each pairs, t ∈ T̂ satisfiesd(s, t) > ǫ. The

ǫ-packing number ofT is

M(ǫ, T, d) = max{|T̂ | : T̂ is anǫ-packing ofT}.
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Covering and packing numbers

Theorem: For all ǫ > 0, M(2ǫ) ≤ N(ǫ) ≤ M(ǫ).

Thus, the scaling of the covering and packing numbers is the same.
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Covering and packing numbers: Proof

For the first inequality, consider a minimalǫ-coverT̂ . Any two elements of

a2ǫ-packing ofT cannot be withinǫ of the same element of̂T . (Otherwise,

the triangle inequality shows that they are within2ǫ of each other.) Thus,

there can be no more than one element of a2ǫ packing for each of theN(ǫ)

elements of̂T . That is,M(2ǫ) ≤ N(ǫ).

For the second inequality, consider anǫ-packingT̂ of sizeM(ǫ). Since it is

maximal, no other points ∈ T can be added for which somet ∈ T̂ has

d(s, t) > ǫ. Thus,T̂ is anǫ-cover. So the minimalǫ-cover has size

N(ǫ) ≤ M(ǫ).
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Covering and packing numbers: Example

Theorem: Let ‖ · ‖ be a norm onRd and letB be the unit ball. Then

1

ǫd
≤ N(ǫ, B, ‖ · ‖) ≤

(

2

ǫ
+ 1

)d

.
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Covering and packing numbers of a norm ball: Proof

Lower bound: Consider anǫ-cover{x1, . . . , xN} of sizeN = N(ǫ, B), and

notice that

B ⊆
N
⋃

i=1

(xi + ǫB) ,

so vol(B) ≤ N(ǫ, B)vol(ǫB) = N(ǫ, B)ǫdvol(B),

and henceN(ǫ, B) ≥ 1/ǫd.
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Covering and packing numbers of a norm ball: Proof

Upper bound: Consider a maximalǫ-packing{x1, . . . , xM} of size

M = M(ǫ, B). Since it’s a packing, the ballsxi + (ǫ/2)B are disjoint.

Each of these balls is contained in(1 + ǫ/2)B. Thus,

M
⋃

i=1

(

xi +
ǫ

2
B
)

⊆ (1 + ǫ/2)B,

so Mvol((ǫ/2)B) ≤ vol((1 + ǫ/2)B)

M
( ǫ

2

)d

vol(B) ≤
(

1 +
ǫ

2

)d

vol(B).

and henceN(ǫ, B) ≤ M(ǫ, B) ≤ (2/ǫ+ 1)d.
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Example: smoothly parameterized functions

Let F be a parameterized class of functions,

F = {f(θ, ·) : θ ∈ Θ}.

Let ‖ · ‖Θ be a norm onΘ and let‖ · ‖F be a norm onF . Suppose that the

mappingθ 7→ f(θ, ·) is L-Lipschitz, that is,

‖f(θ, ·)− f(θ′, ·)‖F ≤ L‖θ − θ′‖Θ.

ThenN(ǫ, F, ‖ · ‖F ) ≤ N(ǫ/L,Θ, ‖ · ‖Θ).
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Example: smoothly parameterized functions

A Lipschitz parameterization allows us to translates a cover of the

parameter space into a cover of the function space.

Example: IfF is smoothly parameterized by a (compact set of)d

parameters, thenN(ǫ, F ) = O(1/ǫd).
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Example: 1-dimensional Lipschitz functions

LetF be the set ofL-Lipschitz functions mapping from[0, 1] to [0, 1]. Then

in the infinity norm‖f‖∞ = supx∈[0,1] |f(x)|,

logN(ǫ, F, ‖ · ‖∞) = Θ(L/ǫ).

Proof idea: form anǫ grid of the y-axis, and anǫ/L grid of the x-axis, and

consider all functions that are piecewise linear on this grid, where all pieces

have slopes+L or−L. There are1/ǫ starting points, and for each starting

point there are2L/ǫ slope choices. It’s easy to show that this set is anO(ǫ)

packing and anO(ǫ) cover.
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Example: d-dimensional Lipschitz functions

Let Fd be the set ofL-Lipschitz functions (wrt‖ · ‖∞) mapping from[0, 1]d

to [0, 1]. Then

logN(ǫ, Fd, ‖ · ‖∞) = Θ
(

(L/ǫ)d
)

.

Note theexponential dependence on the dimension.
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Canonical Rademacher and Gaussian Processes

Definition: Fix a setT ⊂ R
n.

1. Thecanonical Gaussian processis the stochastic process

Gθ = 〈g, θ〉 =
n
∑

i=1

giθi,

wheregi ∼ N(0, 1) i.i.d.

2. Thecanonical Rademacher processis the stochastic process

Rθ = 〈ǫ, θ〉 =
n
∑

i=1

ǫiθi,

where theǫi are i.i.d. and uniform on{±1}.
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Canonical Rademacher and Gaussian Processes

Definition: A stochastic processθ 7→ Xθ with indexing setT is sub-

Gaussian with respect to a metricd onT if, for all θ, θ′ ∈ T and allλ ∈ R,

E exp (λ(Xθ −Xθ′)) ≤ exp

(

λ2d(θ, θ′)2

2

)

.

The canonical Rademacher and Gaussian processes are sub-Gaussian wrt

the Euclidean metric.
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Canonical Rademacher and Gaussian Processes

Indeed:

Gθ −Gθ′ = 〈g, θ − θ′〉,
which isN(0, ‖θ − θ′‖2), and hence its moment generating function is

equal to the upper bound.

Rθ −Rθ′ = 〈ǫ, θ − θ′〉,

which, by the bounded differences property, is sub-Gaussian with parameter

‖θ − θ′‖2.
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An aside: Orlicz norms

Definition: For1 ≤ α ≤ 2, theα-Orlicz norm of a random variableX is

‖X‖ψα
= inf

{

C > 0 : E exp

( |X |α
Cα

)

≤ 2

}

.

Theorem: There are constantsc1, c2 such that, for allX and allt ≥ 1,

Pr(|X | ≥ t) ≤ 2 exp

(

−c1
tα

‖X‖αψα

)

,

and conversely,Pr(|X | ≥ t) ≤ c exp(−tα/Kα) implies‖X‖ψα
≤ c2K.

Sub-Gaussian means‖Xθ −X ′

θ‖ψ2
≤ Ld(θ, θ′).
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Canonical Gaussian and Rademacher processes

Theorem: ForT ⊆ R
n,

E sup
θ∈T

Rθ ≤
√

π

2
E sup
θ∈T

Gθ ≤ c
√

lognE sup
θ∈T

Rθ.
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Canonical Gaussian and Rademacher processes

Proof of first inequality:

E sup
θ∈T

Gθ = E sup
θ∈T

n
∑

i=1

giθi

= E sup
θ∈T

n
∑

i=1

ǫi|gi|θi

≥ E sup
θ∈T

n
∑

i=1

ǫiE [|gi|] θi

=

√

2

π
E sup
θ∈T

Rθ.
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Canonical Gaussian and Rademacher processes: Example

ForΘ thel1-ball inR
n,

E sup
θ
〈ǫ, θ〉 = E‖ǫ‖∞ = 1.

[where we’ve used the duality ofℓ1 andℓ∞ (equivalently, that Ḧolder’s

inequality is tight).] Also,

E sup
θ
〈g, θ〉 = E‖g‖∞ ≤

√
2 lnn.

The Gaussian and Rademacher complexities are a
√
logn factor apart in

this case.
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Canonical Gaussian and Rademacher processes: Example

To see the last inequality, we generalize the Finite Lemma tothe

sub-Gaussian case:

Lemma: Forg with independent sub-Gaussian components,

Emax
a∈A

〈g, a〉 ≤ max
a∈A

‖a‖
√

2 log |A|.

In this case,A = {ei : 1 ≤ i ≤ n}, somaxa∈A ‖a‖ = 1 and|A| = n.
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Canonical Gaussian and Rademacher processes: Example

Proof:

exp

(

λEmax
a∈A

〈g, a〉
)

≤ E exp

(

λmax
a∈A

〈g, a〉
)

= Emax
a∈A

exp (λ〈g, a〉)

≤
∑

a∈A

E exp (λ〈g, a〉)

≤ |A| exp
(

λ2R2/2
)

,

sincegi is sub-gaussian (here,R2 = maxa∈A ‖a‖22). Picking

λ2 = 2 log |A|/R2 gives the result.
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