Introduction to Time Series Analysis. Lecture 7.
Peter Bartlett

Last lecture:

1. ARMA(p,q) models: stationarity, causality, invertibyl

2. The linear process representation of ARMA procesges:

3. Autocovariance of an ARMA process.

4. Homogeneous linear difference equations.
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1. Review: ARMA(p,q) models and their properties
2. Review: Autocovariance of an ARMA process.

3. Homogeneous linear difference equations.

Forecasting

1. Linear prediction.

2. Projection in Hilbert space.




Review: Autoregressive moving average mode's

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

¢(B)X: = 0(B)Wr,

where ¢, 6 are degreep, ¢ polynomials and{W,} ~
WN(0,02).

We'll insist that the polynomial® andd have no common factors.




Review: Properties of ARMA(p,q) modelfl

Theorem: If ¢ andf have no common factors, a (uniquekg-
tionary solution{ X;} to ¢(B)X; = 0(B)W,
exists iff

D(z) =1—¢rz— - —dpaf =0 = |2 £ 1.
This ARMA(p,q) process isausal iff
d(z)=1—prz—--—¢p2P =0 = |2z| > 1.

It is invertible iff

0(2) =14+61z4+ - 4+6,27=0. = |z| > 1.




Review: Properties of ARMA(p,Qq) modelfl

¢(B)X: = 0(B)W,
so  0(B) =v(B)¢(B)

o :

1= w()a
01 = 1 — P10,
O = 1o — P11 — - -+ — P2y,

We need to solve the linear difference equatior= ¢(B)v;, with y = 1,
0; =0forj <0,5>q.




Review: Autocovariance functions of ARMA processe'

d(B)X: = 60(B)Wy, VRN
v(h) — dr1y(h—1) — p(2)y(h —2) — - --

We need to solve the homogeneous linear difference equation
¢(B)vy(h) =0 (h > q), with initial conditions
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Homogeneous linear diff eqns with constant coefficienf

apTy + a1T¢—1 + -+ apXi— =0
(a0—|—alB—|—---—|—akBk)xt =0
& a(B)xy =0
auxiliary equation:  ag + a1z + -+ apz® =0
& (z—21)(z—29) - (2—2zk) =0
wherezq, 2o, ..., 2z, € C are the roots of thisharacteristic polynomial.

Thus,

a(B)x; =0 (B—21)(B—22) (B — z)xs = 0.




Homogeneous linear diff eqns with constant coefficienf

a(B)xy =0 & (B—2z1)(B—29)--(B—zi)x: = 0.

So any{z;} satisfying(B — z;)x; = 0 for somei also satisfiea(B)x; = 0.

Three cases:
1. Thez; are real and distinct.
2. Thez; are complex and distinct.

3. Somez; are repeated.




Homogeneous linear diff eqns with constant coefficienf

1. The z; are real and distinct.

a(B)xy =0

x¢ 1S a linear combination of solutions to
(B—2z1)x =0, (B—29)x =0,..., (B —2zx)xsy =0

—t —t —t
<~ Tt = Cl12; +Co29 -+ Ck2p

for some constants, . . ., ¢.
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Homogeneous linear diff eqns with constant coefficienf

1. The z; are real and distinct. e.g.,z; = 1.2, 20 = —1.3

-t -t
+
€12 767

T T
o c =1, C2=O
—o ¢,=0, 02—1
o C =-0.8, cz——O.Z H
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Reminder: Complex exponentialj

a+ib=re' =r(cosf +isinh),

where r = |a + ib| = a? 4 b?

0 = tan~ ! (b

6i<91+92),

’1,92:<

1 61917“26 r173)

2z = |z|%.
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Homogeneous linear diff eqns with constant coefficienf

2. The z; are complex and distinct.

As before, a(B)xy =0

—t —t —t
<~ Ty = C127 +C229 + -+ Ckpzp -

If 21 € R, sinceaq,...,a are real, we must have the complex conjugate
root, z; = z;. And for z, to be real, we must havwg = ¢;. For example:

Ty = czl_t +e5 ¢
— 6@'0‘21 ‘—te—z’wt 4 6—i9‘21|—t6z’wt
— | <€z’(0—wt) X 6—i(9—wt)>

= 27| 21| " cos(wt — )

wherez; = |z|e’ ande = re®.
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Homogeneous linear diff eqns with constant coefficienf

2. The z; are complex and distinct.e.g.,z1 = 1.2+ 4,20 = 1.2 — ¢

T T

—©— ¢=1.0+0.0i
—©- ¢=0.0+1.0i
—©- ¢=-0.8-0.2i H
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Homogeneous linear diff eqgns with constant coefficien

1

1-0.1

= 1—|—012,22 =

21

2. The z; are complex and distinct.e.g.,

1.0+0.0i

—-©- ¢

0.0+1.0i

—©- cC
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Homogeneous linear diff egns with constant coefficienf

3. Somez; are repeated.

=

| 21 — 292,

=

We can check thate; + c2t)z1_t IS a solution...

More generally(B — z1)™x; = 0 has the solution
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Homogeneous linear diff eqns with constant coefficienf

3. Somez; are repeated.e.qg.,z; = z9 = 1.5.

-t
(c,+c, 0z
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‘ Solving linear diff egns with constant coefficientj

Solve: apxi + a1xi—1 + -+ apxri—p =0,
with initial conditions x4, ..., z..
Auxiliary equationinz € C: ag+aiz+---+apz® =0

& (z—21)" (2 —29)"2 (2 —2)"™ =0,

wherez, 2o, ..., z; € C are the roots of the characteristic polynomial, ang
z; occurs with multiplicitym;.

Solutions: ¢1(t)2; " + ca(t)zy t + - + ¢ (t)2

wherec;(t) is a polynomial int of degreem,; — 1.

We determine the coefficients of thgt) using the initial conditions

(which might be linear constraints on the initial values. . ., z).
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Autocovariance functions of ARMA processes: Examplj

(1+0.25B%)X, = (1 +0.2B)W,, &

1 1r 1 1 1 1 1

= 1. = —=. — —
v; (’5’ 4’ 20716780 64’ 320’

[ 02 (Yo +0.2¢01) if h=0,
< y(h) +0.25v(h — 2) = < 0.202 1)y if h =1,

0 otherwise.
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Autocovariance functions of ARMA processes: Examplj

We have the homogeneous linear difference equation

v(h) + 0.25v(h —2) =0

for h > 2, with initial conditions
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Autocovariance functions of ARMA processes: Examplj

Homogeneous lin. diff. egn:
v(h) + 0.25v(h — 2) = 0.

The characteristic polynomial is

1 1
1+0.252% = - (4+2%) = (2 — 20)(= + 20),

which has roots at; = 2¢'™/2, z; = 2¢~i7/2,
The solution is of the form

v(h) = ez 4 e
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Autocovariance functions of ARMA processes: Examplj

2 =22 5 =2e7/2 ¢ = |c|e®?.
We have v(h) = czy " +ez "

_ o9—h (‘C|€i(9—h7r/2) 4 ‘C|€z'(—9—|—h7r/2)>

— 127" cos (hg — 9) .

And we determine, 0 from the initial conditions

v(0) + 0.257(—2) = o= (1 + 1/25)
v(1) + 0.25v(—1) = o2 /5.
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Autocovariance functions of ARMA processes: Examplj

We determine:;, 0 from the initial conditions:

We plug  v(0) = ¢q cos(0)

Into
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Autocovariance functions of ARMA processes: Examplj

24



Introduction to Time Series Analysis. Lecture 7.

1. Review: ARMA(p,q) models and their properties

2. Review: Autocovariance of an ARMA process.

3. Homogeneous linear difference equations.
Forecasting

1. Linear prediction.

2. Projection in Hilbert space.

25



Review: least squares linear predictio:'

Consider dinear predictor of X, givenX,, = x,,:

flz,) =ag+ arz,.

For a stationary time serigsX; }, the best linear predictor is
[ (zn) = (1 = p(h))p + p(h)zn:

E(Xpan — (a0 + a1X0)) 2 E(Xnpn — F4(Xn))*
= o*(1 - p(h)?).
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‘ Linear prediction I

Given X, X, ..., X, the best linear predictor

n
X:LL_'_m — (X —+ E Ckz'XZ'
1=1

of X,,,, satisfies thg@rediction equations

E(Xppm — X

n—l—m) :O
E[(Xnim — X)) Xi] =0 fori=1,...

This is a special case of tipeojection theorem.
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Projection Theorem'

If H is a Hilbert space,
M is a closed linear subspacef
andy € H,

then there is a poinPy € M

(the projection of y on M)

satisfying

L [Py — y|| < [lw—yl forw e M,

2. [Py —y| < |lw—y| forw e M,w #y
3.{(y — Py,w) =0 forw e M.
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‘ Hilbert spaces'

Hilbert space= «mpecinner product space:
Inner product space: vector space, with inner produch):
* <a7 b> — <b7 a>’

o (dvjay + azag, b) = ai{ar,b) + az(az,b),

e (a,a) =0 a=0.
Norm: ||a||* = {(a, a).

complete = limits of Cauchy sequences are in the space

Examples:

1. R™, with Euclidean inner productx, y) = > . z;v;.

2. {random variables{: EX? < oo},

with inner pI’OdUC'[<X : Y> — E(X Y) (Strictly, equivalence classes of a.s. equal r.v.s)
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‘ Projection theorem'

Example:Linear regression
Giveny = (y1, 92, ..., yn) € R",andZ = (21,...,z,) € R"¥4,

chooses = (51, ..., 08,) € R?to minimize|ly — Z3||%.

Here,H = R", with (a,b) = > . a;b;, and
M=A{Zp: BRI} =sp{z,...,2,}
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‘ Projection theorem'

If H is a Hilbert space,
M is a closed subspace #f,
andy € H,

then there is a poinPy € M
(the projection of y on M)
satisfying

L [Py —y| <[lw—yl

2. (y — Py,w) =0

for w € M.
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‘ Projection theorem'

y-Py

<y_Py7w> =0

a—
& 7'73 = 7"y
a—

B=(2'2)"17"y

“normal equations.”
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‘ Projection theorem'

Example:Linear prediction
Givenl, X1, X,,..., X,, € {rv.sX : EX? < oo},

chooseng, o1, ...,a, € R

sothatZ = ap + >~ a; X; minimizes BX,, 4., — Z)*.

Here,(X,Y) = E(XY),
M={Z=ay+>Y " ;X;:a; € R} =sp{l, Xy,...,X,}, and
Yy = Xn—l—m-
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‘ Projection theorem'

If H is a Hilbert space,
M is a closed subspace #f,
andy € H,

then there is a poinPy € M
(the projection of y on M)
satisfying

L [Py —y| <[lw—yl

2. (y — Py,w) =0

for w € M.
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‘ Projection theorem: Linear prediction I

Let X', denote the best linear predictor:

n+m

1X™,  — Xoamll? <1 Z = Xoaw||? forall Z € M.

n—+m
The projection theorem implies the orthogonality

(X5

n—+m

(X

n—+m

— Xpnim,Z)=0 forall Z e M
— Xpaim,Z)y=0 forall Z e {1, X,,...

E(X! 0 — Xnim) =0

T E[(xn

n—+m

- Xn—i—m) Xz] =0

That is, theprediction errors (X", .. — X,,..,,) areuncorrelated with the

n+m

prediction variables (1, X1, ..., X,).
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‘ Linear prediction I

Error (X", ~— X, 1) Is uncorrelated with the prediction variadle

n—+m

E (X"

n—+m

— Xpt,,) =0

E <Oé0 -+ ZO&ZXZ — Xn—l—m) =0

(o)
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‘ Linear prediction I

[ <1Za> — .

Substituting forag in

we get X"

n—+m

So we can subtragt from all variables:
XM == i (X;—p).

Thus, for forecasting, we can assume= 0. So we’ll ignoreay.
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‘ One-step-ahead linear predictio:'

Write Xg—kl ¢n1X + ¢n2Xn—1+ il s ¢nnX1
Prediction equations: BX) 1 — Xn41)X;) =0, fori=1,...,n

& Zqﬁm Xny1-5X;) = B(X 1 X5)

> buli - 1) =00

Fn¢n — Tn;
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‘ One-step-ahead linear predictio:'

Prediction equations: I',¢, = Vy.

v(n —1)
v(n —2)

A(n-1) -2
¢n — (¢n17 ¢n27 I ¢nn)/7
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‘ Mean squared error of one-step-ahead linear predictio:'

whereX = (
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‘ Mean squared error of one-step-ahead linear predictio:'

Variance is reduced:

P??—i—l =E (Xn+1 - Xg+1)2

=(0) — %Fﬁl%
= Var(X,,+1) — Cov(X,, 1, X)Cov( X, X)) 'Cov(X, X,,41)
— E(X,41 — 0)? — Cov(X,p41, X)CoV(X, X) " CoV(X, Xpi1),

whereX = (X,,, X,,_1,...,X1)".
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