Introduction to Time Series Analysis. Lecture 7. Peter Bartlett

Last lecture:

- 1. ARMA(p,q) models: stationarity, causality, invertibility
- 2. The linear process representation of ARMA processes: ψ .
- 3. Autocovariance of an ARMA process.
- 4. Homogeneous linear difference equations.

Introduction to Time Series Analysis. Lecture 7. Peter Bartlett

- 1. Review: ARMA(p,q) models and their properties
- 2. Review: Autocovariance of an ARMA process.
- 3. Homogeneous linear difference equations.

Forecasting

- 1. Linear prediction.
- 2. Projection in Hilbert space.

Review: Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$\phi(B)X_t = \theta(B)W_t,$$

where ϕ , θ are degree p, q polynomials and $\{W_t\} \sim WN(0,\sigma^2)$.

We'll insist that the polynomials ϕ and θ have no common factors.

Review: Properties of ARMA(p,q) models

Theorem: If ϕ and θ have no common factors, a (unique) *stationary* solution $\{X_t\}$ to $\phi(B)X_t = \theta(B)W_t$ exists iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| \neq 1.$$

This ARMA(p,q) process is causal iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| > 1.$$

It is invertible iff

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q = 0. \implies |z| > 1.$$

Review: Properties of ARMA(p,q) models

$$\phi(B)X_t = \theta(B)W_t, \qquad \Leftrightarrow \qquad X_t = \psi(B)W_t$$
so
$$\theta(B) = \psi(B)\phi(B)$$

$$\Leftrightarrow \vdots$$

$$\Leftrightarrow \qquad 1 = \psi_0,$$

$$\theta_1 = \psi_1 - \phi_1\psi_0,$$

$$\theta_2 = \psi_2 - \phi_1\psi_1 - \dots - \phi_2\psi_0,$$

$$\vdots$$

We need to solve the linear difference equation $\theta_j = \phi(B)\psi_j$, with $\theta_0 = 1$, $\theta_j = 0$ for j < 0, j > q.

Review: Autocovariance functions of ARMA processes

$$\phi(B)X_t = \theta(B)W_t, \quad \Leftrightarrow \quad X_t = \psi(B)W_t,$$

$$\gamma(h) - \phi_1\gamma(h-1) - \phi(2)\gamma(h-2) - \dots = \sigma_w^2 \sum_{j=h}^q \theta_j \psi_{j-h}.$$

We need to solve the homogeneous linear difference equation $\phi(B)\gamma(h)=0$ (h>q), with initial conditions

$$\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = \sigma_w^2 \sum_{j=h}^q \theta_j \psi_{j-h}, \qquad h = 0, \dots, q.$$

Introduction to Time Series Analysis. Lecture 7.

- 1. Review: ARMA(p,q) models and their properties
- 2. Review: Autocovariance of an ARMA process.
- 3. Homogeneous linear difference equations.

Forecasting

- 1. Linear prediction.
- 2. Projection in Hilbert space.

$$a_0x_t + a_1x_{t-1} + \dots + a_kx_{t-k} = 0$$

$$\Leftrightarrow \quad (a_0 + a_1B + \dots + a_kB^k) x_t = 0$$

$$\Leftrightarrow \quad a(B)x_t = 0$$
auxiliary equation:
$$a_0 + a_1z + \dots + a_kz^k = 0$$

$$\Leftrightarrow \quad (z - z_1)(z - z_2) \cdots (z - z_k) = 0$$

where $z_1, z_2, \ldots, z_k \in \mathbb{C}$ are the roots of this *characteristic polynomial*. Thus,

$$a(B)x_t = 0 \qquad \Leftrightarrow \qquad (B - z_1)(B - z_2) \cdots (B - z_k)x_t = 0.$$

$$a(B)x_t = 0 \qquad \Leftrightarrow \qquad (B - z_1)(B - z_2) \cdots (B - z_k)x_t = 0.$$

So any $\{x_t\}$ satisfying $(B-z_i)x_t=0$ for some i also satisfies $a(B)x_t=0$.

Three cases:

- 1. The z_i are real and distinct.
- 2. The z_i are complex and distinct.
- 3. Some z_i are repeated.

1. The z_i are real and distinct.

$$a(B)x_t = 0$$

$$\Leftrightarrow \qquad (B - z_1)(B - z_2) \cdots (B - z_k)x_t = 0$$

$$\Leftrightarrow \qquad x_t \text{ is a linear combination of solutions to}$$

$$(B - z_1)x_t = 0, (B - z_2)x_t = 0, \dots, (B - z_k)x_t = 0$$

$$\Leftrightarrow \qquad x_t = c_1 z_1^{-t} + c_2 z_2^{-t} + \dots + c_k z_k^{-t},$$

for some constants c_1, \ldots, c_k .

1. The z_i are real and distinct. e.g., $z_1 = 1.2, z_2 = -1.3$

Reminder: Complex exponentials

$$a+ib=re^{i\theta}=r(\cos\theta+i\sin\theta),$$
 where $r=|a+ib|=\sqrt{a^2+b^2}$
$$\theta=\tan^{-1}\left(\frac{b}{a}\right)\in(-\pi,\pi].$$
 Thus, $r_1e^{i\theta_1}r_2e^{i\theta_2}=(r_1r_2)e^{i(\theta_1+\theta_2)},$
$$z\bar{z}=|z|^2.$$

2. The z_i are complex and distinct.

As before,
$$a(B)x_{t} = 0$$
 $\Leftrightarrow x_{t} = c_{1}z_{1}^{-t} + c_{2}z_{2}^{-t} + \dots + c_{k}z_{k}^{-t}.$

If $z_1 \notin \mathbb{R}$, since a_1, \ldots, a_k are real, we must have the complex conjugate root, $z_j = \bar{z_1}$. And for x_t to be real, we must have $c_j = \bar{c_1}$. For example:

$$x_{t} = c z_{1}^{-t} + \bar{c} \bar{z}_{1}^{-t}$$

$$= r e^{i\theta} |z_{1}|^{-t} e^{-i\omega t} + r e^{-i\theta} |z_{1}|^{-t} e^{i\omega t}$$

$$= r |z_{1}|^{-t} \left(e^{i(\theta - \omega t)} + e^{-i(\theta - \omega t)} \right)$$

$$= 2r |z_{1}|^{-t} \cos(\omega t - \theta)$$

where $z_1 = |z_1|e^{i\omega}$ and $c = re^{i\theta}$.

2. The z_i are complex and distinct. e.g., $z_1 = 1.2 + i$, $z_2 = 1.2 - i$

2. The z_i are complex and distinct. e.g., $z_1 = 1 + 0.1i$, $z_2 = 1 - 0.1i$

3. Some z_i are repeated.

$$a(B)x_t = 0$$

$$\Leftrightarrow \qquad (B - z_1)(B - z_2) \cdots (B - z_k)x_t = 0.$$
If $z_1 = z_2$,
$$(B - z_1)(B - z_2)x_t = 0$$

$$\Leftrightarrow \qquad (B - z_1)^2 x_t = 0.$$

We can check that $(c_1 + c_2 t)z_1^{-t}$ is a solution...

More generally, $(B - z_1)^m x_t = 0$ has the solution $(c_1 + c_2 t + \cdots + c_{m-1} t^{m-1}) z_1^{-t}$.

3. Some z_i are repeated. e.g., $z_1 = z_2 = 1.5$.

Solving linear diff eqns with constant coefficients

Solve: $a_0x_t + a_1x_{t-1} + \cdots + a_kx_{t-k} = 0,$

with initial conditions x_1, \ldots, x_k .

Auxiliary equation in $z \in \mathbb{C}$: $a_0 + a_1 z + \cdots + a_k z^k = 0$

$$\Leftrightarrow$$
 $(z-z_1)^{m_1}(z-z_2)^{m_2}\cdots(z-z_l)^{m_l}=0,$

where $z_1, z_2, \ldots, z_l \in \mathbb{C}$ are the roots of the characteristic polynomial, and z_i occurs with multiplicity m_i .

Solutions: $c_1(t)z_1^{-t} + c_2(t)z_2^{-t} + \cdots + c_l(t)z_l^{-t}$,

where $c_i(t)$ is a polynomial in t of degree $m_i - 1$.

We determine the coefficients of the $c_i(t)$ using the initial conditions (which might be linear constraints on the initial values x_1, \ldots, x_k).

$$(1+0.25B^2)X_t = (1+0.2B)W_t, \qquad \Leftrightarrow \qquad X_t = \psi(B)W_t,$$

$$\psi_j = \left(1, \frac{1}{5}, -\frac{1}{4}, -\frac{1}{20}, \frac{1}{16}, \frac{1}{80}, -\frac{1}{64}, -\frac{1}{320}, \ldots\right).$$

$$\gamma(h) - \phi_1 \gamma(h-1) - \phi_2 \gamma(h-2) = \sigma_w^2 \sum_{j=0}^{q-h} \theta_{h+j} \psi_j$$

$$\Leftrightarrow \gamma(h) + 0.25\gamma(h-2) = \begin{cases} \sigma_w^2 \left(\psi_0 + 0.2\psi_1\right) & \text{if } h = 0, \\ 0.2\sigma_w^2 \psi_0 & \text{if } h = 1, \\ 0 & \text{otherwise.} \end{cases}$$

We have the homogeneous linear difference equation

$$\gamma(h) + 0.25\gamma(h-2) = 0$$

for $h \geq 2$, with initial conditions

$$\gamma(0) + 0.25\gamma(-2) = \sigma_w^2 (1 + 1/25)$$

$$\gamma(1) + 0.25\gamma(-1) = \sigma_w^2 / 5.$$

Homogeneous lin. diff. eqn:

$$\gamma(h) + 0.25\gamma(h-2) = 0.$$

The characteristic polynomial is

$$1 + 0.25z^{2} = \frac{1}{4} (4 + z^{2}) = \frac{1}{4} (z - 2i)(z + 2i),$$

which has roots at $z_1 = 2e^{i\pi/2}$, $\bar{z_1} = 2e^{-i\pi/2}$.

The solution is of the form

$$\gamma(h) = cz_1^{-h} + \bar{c}\bar{z_1}^{-h}.$$

$$z_{1} = 2e^{i\pi/2}, \bar{z}_{1} = 2e^{-i\pi/2}, c = |c|e^{i\theta}.$$
We have
$$\gamma(h) = cz_{1}^{-h} + \bar{c}\bar{z}_{1}^{-h}$$

$$= 2^{-h} \left(|c|e^{i(\theta - h\pi/2)} + |c|e^{i(-\theta + h\pi/2)} \right)$$

$$= c_{1}2^{-h} \cos\left(\frac{h\pi}{2} - \theta\right).$$

And we determine c_1 , θ from the initial conditions

$$\gamma(0) + 0.25\gamma(-2) = \sigma_w^2 (1 + 1/25)$$
$$\gamma(1) + 0.25\gamma(-1) = \sigma_w^2/5.$$

We determine c_1 , θ from the initial conditions:

We plug
$$\gamma(0) = c_1 \cos(\theta)$$

$$\gamma(1) = \frac{c_1}{2} \sin(\theta)$$

$$\gamma(2) = -\frac{c_1}{4} \cos(\theta)$$
 into
$$\gamma(0) + 0.25\gamma(2) = \sigma_w^2 \left(1 + 1/25\right)$$

$$1.25\gamma(1) = \sigma_w^2/5.$$

Introduction to Time Series Analysis. Lecture 7.

- 1. Review: ARMA(p,q) models and their properties
- 2. Review: Autocovariance of an ARMA process.
- 3. Homogeneous linear difference equations.

Forecasting

- 1. Linear prediction.
- 2. Projection in Hilbert space.

Review: least squares linear prediction

Consider a linear predictor of X_{n+h} given $X_n = x_n$:

$$f(x_n) = \alpha_0 + \alpha_1 x_n.$$

For a stationary time series $\{X_t\}$, the best linear predictor is $f^*(x_n) = (1 - \rho(h))\mu + \rho(h)x_n$:

$$E(X_{n+h} - (\alpha_0 + \alpha_1 X_n))^2 \ge E(X_{n+h} - f^*(X_n))^2$$
$$= \sigma^2 (1 - \rho(h)^2).$$

Linear prediction

Given X_1, X_2, \dots, X_n , the best linear predictor

$$X_{n+m}^n = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$$

of X_{n+m} satisfies the **prediction equations**

$$E(X_{n+m} - X_{n+m}^n) = 0$$

$$E[(X_{n+m} - X_{n+m}^n) X_i] = 0 for i = 1, ..., n.$$

This is a special case of the *projection theorem*.

If \mathcal{H} is a Hilbert space,

 \mathcal{M} is a closed linear subspace of \mathcal{H} ,

and $y \in \mathcal{H}$,

then there is a point $Py \in \mathcal{M}$

(the **projection of** y **on** \mathcal{M})

satisfying

1.
$$||Py - y|| \le ||w - y||$$
 for $w \in \mathcal{M}$,

2.
$$||Py - y|| < ||w - y||$$
 for $w \in \mathcal{M}, w \neq y$

3.
$$\langle y - Py, w \rangle = 0$$
 for $w \in \mathcal{M}$.

Hilbert spaces

Hilbert space = complete inner product space:

Inner product space: vector space, with inner product $\langle a, b \rangle$:

- $\bullet \langle a, b \rangle = \langle b, a \rangle,$
- $\bullet \langle \alpha_1 a_1 + \alpha_2 a_2, b \rangle = \alpha_1 \langle a_1, b \rangle + \alpha_2 \langle a_2, b \rangle,$
- $\bullet \langle a, a \rangle = 0 \Leftrightarrow a = 0.$

Norm: $||a||^2 = \langle a, a \rangle$.

complete = limits of Cauchy sequences are in the space

Examples:

- 1. \mathbb{R}^n , with Euclidean inner product, $\langle x, y \rangle = \sum_i x_i y_i$.
- 2. {random variables $X: EX^2 < \infty$ },

with inner product $\langle X, Y \rangle = E(XY)$.

(Strictly, equivalence classes of a.s. equal r.v.s)

Example: Linear regression

Given
$$y = (y_1, y_2, \dots, y_n)' \in \mathbb{R}^n$$
, and $Z = (z_1, \dots, z_q) \in \mathbb{R}^{n \times q}$, choose $\beta = (\beta_1, \dots, \beta_q)' \in \mathbb{R}^q$ to minimize $||y - Z\beta||^2$.

Here,
$$\mathcal{H} = \mathbb{R}^n$$
, with $\langle a, b \rangle = \sum_i a_i b_i$, and $\mathcal{M} = \{Z\beta : \beta \in \mathbb{R}^q\} = \bar{\mathrm{sp}}\{z_1, \dots, z_q\}.$

If \mathcal{H} is a Hilbert space, \mathcal{M} is a closed subspace of \mathcal{H} , and $y \in \mathcal{H}$, then there is a point $Py \in \mathcal{M}$ (the **projection of** y **on** \mathcal{M}) satisfying

1.
$$||Py - y|| \le ||w - y||$$

$$2. \langle y - Py, w \rangle = 0$$

for $w \in \mathcal{M}$.

Example: Linear prediction

Given
$$1, X_1, X_2, \ldots, X_n \in \{\text{r.v.s } X : EX^2 < \infty\}$$
, choose $\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ so that $Z = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$ minimizes $E(X_{n+m} - Z)^2$.

Here,
$$\langle X, Y \rangle = \mathrm{E}(XY)$$
, $\mathcal{M} = \{Z = \alpha_0 + \sum_{i=1}^n \alpha_i X_i : \alpha_i \in \mathbb{R}\} = \bar{\mathrm{sp}}\{1, X_1, \dots, X_n\}$, and $y = X_{n+m}$.

If \mathcal{H} is a Hilbert space, \mathcal{M} is a closed subspace of \mathcal{H} , and $y \in \mathcal{H}$, then there is a point $Py \in \mathcal{M}$ (the **projection of** y **on** \mathcal{M}) satisfying

1.
$$||Py - y|| \le ||w - y||$$

$$2. \langle y - Py, w \rangle = 0$$

for $w \in \mathcal{M}$.

Projection theorem: Linear prediction

Let X_{n+m}^n denote the best linear predictor:

$$||X_{n+m}^n - X_{n+m}||^2 \le ||Z - X_{n+m}||^2$$
 for all $Z \in \mathcal{M}$.

The projection theorem implies the orthogonality

$$\langle X_{n+m}^n - X_{n+m}, Z \rangle = 0 \quad \text{for all } Z \in \mathcal{M}$$

$$\Leftrightarrow \qquad \langle X_{n+m}^n - X_{n+m}, Z \rangle = 0 \quad \text{for all } Z \in \{1, X_1, \dots, X_n\}$$

$$\Leftrightarrow \qquad \frac{\mathbb{E}(X_{n+m}^n - X_{n+m}) = 0}{\mathbb{E}[(X_{n+m}^n - X_{n+m}) X_i] = 0}$$

That is, the prediction errors $(X_{n+m}^n - X_{n+m})$ are uncorrelated with the prediction variables $(1, X_1, \ldots, X_n)$.

Linear prediction

Error $(X_{n+m}^n - X_{n+m})$ is uncorrelated with the prediction variable 1:

$$\begin{aligned}
& \operatorname{E}\left(X_{n+m}^{n} - X_{n+m}\right) = 0 \\
\Leftrightarrow & \operatorname{E}\left(\alpha_{0} + \sum_{i} \alpha_{i} X_{i} - X_{n+m}\right) = 0 \\
\Leftrightarrow & \mu\left(1 - \sum_{i} \alpha_{i}\right) = \alpha_{0}.
\end{aligned}$$

Linear prediction

$$\mu \left(1 - \sum_{i} \alpha_{i} \right) = \alpha_{0}.$$

Substituting for α_0 in

$$X_{n+m}^{n} = \alpha_0 + \sum_{i} \alpha_i X_i,$$

$$X_{n+m}^{n} = \mu + \sum_{i} \alpha_i (X_i - \mu).$$

So we can subtract μ from all variables:

$$X_{n+m}^{n} - \mu = \sum_{i} \alpha_{i} (X_{i} - \mu).$$

Thus, for forecasting, we can assume $\mu = 0$. So we'll ignore α_0 .

One-step-ahead linear prediction

Write
$$X_{n+1}^n = \phi_{n1} X_n + \phi_{n2} X_{n-1} + \dots + \phi_{nn} X_1$$

 $E((X_{n+1}^n - X_{n+1})X_i) = 0, \text{ for } i = 1, \dots, n$ Prediction equations:

$$\sum_{j=1}^{n} \phi_{nj} E(X_{n+1-j} X_i) = E(X_{n+1} X_i)$$

$$\sum_{j=1}^{n} \phi_{nj} \gamma(i-j) = \gamma(i)$$

$$\Gamma_n \phi_n = \gamma_n,$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

One-step-ahead linear prediction

Prediction equations: $\Gamma_n \phi_n = \gamma_n$.

$$\Gamma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \gamma(n-2) \\ \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix},$$

$$\phi_n = (\phi_{n1}, \phi_{n2}, \dots, \phi_{nn})', \quad \gamma_n = (\gamma(1), \gamma(2), \dots, \gamma(n))'.$$

Mean squared error of one-step-ahead linear prediction

$$P_{n+1}^{n} = E (X_{n+1} - X_{n+1}^{n})^{2}$$

$$= E ((X_{n+1} - X_{n+1}^{n}) (X_{n+1} - X_{n+1}^{n}))$$

$$= E (X_{n+1} (X_{n+1} - X_{n+1}^{n}))$$

$$= \gamma(0) - E (\phi'_{n} X X_{n+1})$$

$$= \gamma(0) - \gamma'_{n} \Gamma_{n}^{-1} \gamma_{n},$$

where $X = (X_n, X_{n-1}, \dots, X_1)'$.

Mean squared error of one-step-ahead linear prediction

Variance is reduced:

$$\begin{split} P_{n+1}^n &= \mathrm{E} \left(X_{n+1} - X_{n+1}^n \right)^2 \\ &= \gamma(0) - \gamma_n' \Gamma_n^{-1} \gamma_n \\ &= \mathrm{Var}(X_{n+1}) - \mathrm{Cov}(X_{n+1}, X) \mathrm{Cov}(X, X)^{-1} \mathrm{Cov}(X, X_{n+1}) \\ &= \mathrm{E} \left(X_{n+1} - 0 \right)^2 - \mathrm{Cov}(X_{n+1}, X) \mathrm{Cov}(X, X)^{-1} \mathrm{Cov}(X, X_{n+1}), \end{split}$$
 where $X = (X_n, X_{n-1}, \dots, X_1)'.$

Introduction to Time Series Analysis. Lecture 7. Peter Bartlett

- 1. Review: ARMA(p,q) models and their properties
- 2. Review: Autocovariance of an ARMA process.
- 3. Homogeneous linear difference equations.

Forecasting

- 1. Linear prediction.
- 2. Projection in Hilbert space.