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Last lecture:

1. Causality

2. Invertibility

3. AR(p) models

4. ARMA(p,q) models
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. ARMA(p,q) models

. Stationarity, causality and invertibility

. The linear process representation of ARMA procesges:

. Autocovariance of an ARMA process.

. Homogeneous linear difference equations.




Review: Causality'

A linear procesq X; } is causal(strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -




Review: Invertibility I

A linear procesd X;} is invertible (strictly, aninvertible
function of {IW,}) if there is a

7T<B):7TO+7TlB+7TQB2+"'




Review: AR(p), Autoregressive models of ordep'

An AR(p) process{ X, } is a stationary process that satisfies

Xe — 1 Xp—1 — - — QpXy—p = Wi,

where{W,;} ~ WN(0, c?).

Equivalently, ¢(B)X; = W4,
where ¢(B)=1—¢1B—---— ¢,B".




Review: AR(p), Autoregressive models of ordep'

Theorem: A (unique)stationarysolution tog(B) X; = W;
exists iff the roots ofp(z) avoidthe unit circle:

=1 = ¢(z) =1 — 1z — - — §p2" £0.

This AR(p) process isausaliff the roots of ¢(z) are outside
the unit circle:

2 S1 = 6(z) =1 —drz— - — 32" £0,




‘ Reminder: Polynomials of a complex variablﬂ

Every degree polynomiala(z) can be factorized as
a(z) =ap+a1z+ -+ a2 =a,(z—21)(2 —22) - (2 — 2p),

wherezy, ..., z, € C are therootsof a(z). If the coefficientsyy, a4, ..., a,
are all real, then the roots are all either real or come in dernponjugate
pairs,z; = z;.

Example: z + 2% = z(1 + 2°%) = (2 — 0)(z — @) (2 + 1),
that iS,Zl =0, 29 =1, 23 = —1. Soz; € R; 22,23 Q/ R; 29 = Z3.

Recall notation: A complex number= a + ib hasRe(z) = a, Im(2)

Z=a—1ib, |z| = Va? + b2, arg(z) = tan~"1(b/a) € (—m, 7).




‘Review: Calculating ) for an AR(p): general casﬂ

gb(B)Xt — Wt, =

S0 1=1(B)g(B)
& 1=t $:B+- )1 -$B -~ $,B)

~ 1:¢Oa O:¢j (j<0)7
0= (BN, (> 0).

We can solve thedaear difference equations several ways:

e numerically, or

e by guessing the form of a solution and using an inductive fpi@o
¢ by using the theory of linear difference equations.




Introduction to Time Series Analysis. Lecture 6.

. Review: Causality, invertibility, AR(p) models

. ARMA(p,q) models

. Stationarity, causality and invertibility

. The linear process representation of ARMA procesges:
. Autocovariance of an ARMA process.

. Homogeneous linear difference equations.




‘ARMA(p,q): Autoregressive moving average modeli

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

Xi—1 Xy 1— = Qp Xy p =W +O W1+ - - +0, Wiy,

where{W,;} ~ WN(0, c?).

o AR(p) = ARMA(p,0): §(B) = 1.
e MA(q) = ARMA(0,q): ¢(B) = 1.
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‘ARMA(p,q): Autoregressive moving average modeli

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

Xi—1 Xy 1— = Op Xy p =W +O W1+ - - +0, Wiy,

where{W,;} ~ WN(0, 0?).

Usually, we insist thad,,, 0, # 0 and that the polynomials
¢(2)=1—r1z2— - — Pp2P, 0(z2) =14+01z2+--- 46,21

have no common factors. This implies it is not a lower ordet¥Rkmodel.

11



ARMA(p,q): An example of parameter redundancy'

Consider a white noise proceBs. We can write

Xy =W,
Xt - Xt—l -+ 0.25Xt_2 — Wt - Wt_l + 0.25Wt_2
(1—-B+0.25B*)X,; = (1 - B+ 0.25B*W,

This is in the form of an ARMA(2,2) process, with

¢(B) =1— B+ 0.25B, 0(B)=1— B+ 0.25B.

But it iIs white noise.
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ARMA(p,q): An example of parameter redundancy'

ARMA model: = 0(B)W4,
with —1— B+ 0.25B%,
—1— B+ 0.25B%
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Recall: Causality and Invertibility I

A linear procesq X; } is causalif there is a
(B) = o + 1B+ B + - -

Xt — w(B)Wt

It is invertible if there is a

7T<B):7T0—|—7TlB—|—7TQB2‘|‘°"

and W, =mn(B)X;.
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ARMA(p,q): Stationarity, causality, and invertibility

Theorem: If ¢ andé have no common factors, a (uniqusta-
tionary solution to¢(B)X; = 6(B)W,; exists iff the roots o
¢(z) avoidthe unit circle:

=1 = @) =1 — 1z — - — §p2" £0.

This ARMA(p,q) process isausaliff the roots of¢(z) areout-
sidethe unit circle:

2 1= ¢(2) =11z — - — dypaf #0.
It is invertibleiff the roots off(z) areoutsidethe unit circle:

2| <1 =0(z)=1+012+---+0,27#0.
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ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 —-1.5B)X; = (1+0.2B)W4.

o(z) =1—1.5z = —g

1
9(2):14—0.22:5(z+5).

1. ¢ andf have no common factors, ards root is at2 /3, which is not on
the unit circle, s X} is an ARMA(1,1) process.

2. ¢'s root (at2/3) is inside the unit circle, s X, } is not causal

3. f’s root is at—>5, which is outside the unit circle, SoX,} is invertible

17



ARMA(p,q): Stationarity, causality, and invertibility

Example: (1 +0.25B%*)X; = (1 +2B)W;.

#(z) =1+0.252" = i (2" +4) = i(” 2)(z — 2i),

9(2):1+2z:2<z—|—%>.

1. ¢ andfd have no common factors, amds roots are at-2¢, which is not
on the unit circle, sq X;} is an ARMA(2,1) process.

2. ¢'s roots (at+2¢) are outside the unit circle, oX; } is causal

3. #'s root (at—1/2) is inside the unit circle, s .X:} is not invertible

18



‘Causality and Invertibility I

Theorem: Let {X;} be an ARMA process defined |
o»(B)X: = 0(B)W;. Ifall |z| = 1 havef(z) # 0, then there

are polynomialsy andf and a white noise sequentg, such
that { X, } satisfiesp(B)X, = 6(B)W,, and this is a causa
invertible ARMA process.

So we'll stick to causal, invertible ARMA processes.
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‘ Calculating vy for an ARMA(p,q): matching coefficients'

Example: X, = ¢(B)W, & (1+0.25B*)X, = (1+0.2B)WW,
so 1+0.2B = (1+0.25B*)y(B)
& 1+0.2B = (14 0.25B%)(¢g + Y1 B+ o B* + - )

& 1 = o,
0.2 = 1y,

0 = 1Py 4 0.257),

0 = 43 + 0.25¢1,
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‘ Calculating v for an ARMA(p,q): example I

1 =1y, 0.2 =),
0=1;+025¢; 2 (7 =2)

We can think of this a8; = ¢(B)vy;, with6y =1,60; =0forj < 0,5 > g.

This is afirst order difference equatiom thev;s.

We can use thé;s to give the initial conditions and solve it using the theo
of homogeneous difference equations.

L),
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‘ Calculating v for an ARMA(p,q): general case.

o(B) Xy =0(B)Wy, & Xy =9(B)W;
so  0(B) =v(B)¢(B)
< 1+60B+--+0,B'=(Yo+ 1B+ )(1—¢1B—---—¢,B")
& 1 = 1o,
01 = 11 — P10,
02 = o — P11 — - -+ — Patho,

This is equivalenttd; = ¢(B)w,, withfy, =1,60; =0forj <0, 5 > g.
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Autocovariance functions of linear processe'

Consider a (mean 0) linear procesk; } defined byX; = ¢(B)W;.

v(h) = E(X: Xeyn)

=EWoWr + viWi_1 +¢aWio+--+)
X (VoWign + ViWish—1 +aWign_o+--)
= oo, (Yon + Y1¥ns1 + Yatbpga + -+ ).
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Autocovariance functions of MA processe'

Consider an MA(q) processX; } defined byX; = 0(B)W,.

v(h) =

02 310 00,4, ifh<q,
0 if h > q.
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‘Autocovariance functions of ARMA processej

ARMA process:p(B)X; = 0(B)W;.

To computey, we can computé, and then use

v(h) = og (Yo + V1ng1 + Yathpga + ).
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‘Autocovariance functions of ARMA processej

An alternative approach:

Xt =1 X1 — = 9p Xy
=Wy +0Weq +-- -+ 0, Wiy,
SO E((X¢ — 1 Xym1 — -+ — 0pXy—p) Xi—p)
=E((W; +0Wiqa 4+ +0,Wi—y) Xi—p),
thatis,y(h) — ¢1v(h—1) — - — ppy(h — p)
=E(0sWin Xeopn + - + 0, Wi g Xy i)

qg—h
=00, Y Onsjthy. (Write 6 = 1).
j=0

This is a linear difference equation.
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Autocovariance functions of ARMA processes: Exampl’

(1+0.25B%)X, = (1 +0.2B)W,,

1 1 1 1 1 1
vaj — (17 = iy

5 47 20°16°80° 64

O°20-12u¢0 If h = 1,

0 otherwise.
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Autocovariance functions of ARMA processes: Examplj

We have the homogeneous linear difference equation
v(h) + 0.25v(h —2) =0

for h > 2, with initial conditions

v(0) + 0.25v(—2) = 02 (1 + 1/25)
v(1) + 0.25v(—1) = o2 /5.

We can solve these linear equations to determine
Or we can use the theory of linear difference equations...
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Difference equationﬂ

Examples:

xy —3x1 =0 (first order, linear)
Ty — Tp_1Ti—o = 0 (2nd order, nonlinear)

Ty + 211 —x7 5 =0  (3rd order, nonlinear)
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Homogeneous linear diff eqns with constant coefficienf

apTy + a1T¢—1 + -+ apXi— =0
(a0—|—alB—|—---—|—akBk)xt =0
& a(B)xy =0
auxiliary equation:  ag + a1z + -+ apz® =0
& (z—21)(z—29) - (2—2zk) =0
wherezy, 2o, . .., 2z, € C are the roots of thisharacteristic polynomial

Thus,

a(B)x; =0 (B—21)(B—22) (B — z)xs = 0.
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Homogeneous linear diff eqns with constant coefficienf

a(B)xy =0 & (B—2z1)(B—29)--(B—zi)x: = 0.

So any{z;} satisfying(B — z;)x; = 0 for somei also satisfiea(B)x; = 0.

Three cases:
1. Thez; are real and distinct.
2. Thez; are complex and distinct.

3. Somez; are repeated.
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Homogeneous linear diff eqns with constant coefficienf

1. The z; are real and distinct.

a(B)xy =0

x¢ 1S a linear combination of solutions to
(B—2z1)x =0, (B—29)x =0,..., (B —2zx)xsy =0

—t —t —t
<~ Tt = Cl12; +Co29 -+ Ck2p

for some constants, . . ., ¢.
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Homogeneous linear diff eqns with constant coefficienf

1. The z; are real and distinct. e.g.,z; = 1.2, 20 = —1.3

-t -t
+
€12 767

T T
o c =1, C2=O
—o ¢,=0, 02—1
o C =-0.8, cz——O.Z H
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Reminder: Complex exponentialj

a+ib=re' =r(cosf +isinh),

where r = |a + ib| = a? 4 b?

0 = tan~ ! (b

6i<91+92),

’1,92:<

1 61917“26 r173)

2z = |z|%.
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Homogeneous linear diff eqns with constant coefficienf

2. The z; are complex and distinct.

As before, a(B)xy =0

—t —t —t
<~ Ty = C127 +C229 + -+ Ckpzp -

If 21 € R, sinceaq,...,a are real, we must have the complex conjugate
root, z; = z;. And for z, to be real, we must havwg = ¢;. For example:

Ty = czl_t +e5 ¢
— 6@'0‘21 ‘—te—z’wt 4 6—i9‘21|—t6z’wt
— | <€z’(0—wt) X 6—i(9—wt)>

= 27| 21| " cos(wt — )

wherez; = |z|e’ ande = re®.

38



Homogeneous linear diff eqns with constant coefficienf

2. The z; are complex and distinct.e.g.,z1 = 1.2+ 4,20 = 1.2 — ¢

T T

—©— ¢=1.0+0.0i
—©- ¢=0.0+1.0i
—©- ¢=-0.8-0.2i H
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Homogeneous linear diff eqgns with constant coefficien

1

1-0.1

= 1—|—012,22 =

21

2. The z; are complex and distinct.e.g.,

1.0+0.0i

—-©- ¢

0.0+1.0i

—©- cC
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