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AR(1) as a linear process

Let {Xt} be the stationary solution toXt − φXt−1 = Wt, where

Wt ∼WN(0, σ2).

If |φ| < 1,

Xt =
∞∑

j=0

φjWt−j

is the unique solution:

• This infinite sum converges in mean square, since|φ| < 1 implies
∑

|φj | <∞.

• It satisfies the AR(1) recurrence.
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AR(1) in terms of the back-shift operator

We can write

Xt − φXt−1 = Wt

⇔ (1 − φB)
︸ ︷︷ ︸

φ(B)

Xt = Wt

⇔ φ(B)Xt = Wt

Recall thatB is the back-shift operator:BXt = Xt−1.
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AR(1) in terms of the back-shift operator

Also, we can write

Xt =
∞∑

j=0

φjWt−j

⇔ Xt =
∞∑

j=0

φjBj

︸ ︷︷ ︸

π(B)

Wt

⇔ Xt = π(B)Wt
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AR(1) in terms of the back-shift operator

With these definitions:

π(B) =
∞∑

j=0

φjBj and φ(B) = 1 − φB,

we can check thatπ(B) = φ(B)−1:

π(B)φ(B) =

∞∑

j=0

φjBj(1 − φB) =

∞∑

j=0

φjBj −

∞∑

j=1

φjBj = 1.

Thus, φ(B)Xt = Wt

⇒ π(B)φ(B)Xt = π(B)Wt

⇔ Xt = π(B)Wt.
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AR(1) in terms of the back-shift operator

Notice that manipulating operators likeφ(B), π(B) is like manipulating

polynomials:

1

1 − φz
= 1 + φz + φ2z2 + φ3z3 + · · · ,

provided|φ| < 1 and|z| ≤ 1.
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AR(1) and Causality

LetXt be the stationary solution to

Xt − φXt−1 = Wt,

whereWt ∼WN(0, σ2).

If |φ| < 1,

Xt =

∞∑

j=0

φjWt−j .

φ = 1?

φ = −1?

|φ| > 1?
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AR(1) and Causality

If |φ| > 1, π(B)Wt does not converge.

But we can rearrange

Xt = φXt−1 +Wt

as Xt−1 =
1

φ
Xt −

1

φ
Wt,

and we can check that the unique stationary solution is

Xt = −

∞∑

j=1

φ−jWt+j .

But...Xt depends onfuture values ofWt.

10



Causality

A linear process{Xt} is causal(strictly, acausal function
of {Wt}) if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∞∑

j=0

|ψj | <∞

and Xt = ψ(B)Wt.
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AR(1) and Causality

• Causality is a property of{Xt} and {Wt}.

• Consider the AR(1) process defined byφ(B)Xt = Wt (with

φ(B) = 1 − φB):

φ(B)Xt = Wt is causal

iff |φ| < 1

iff the root z1 of the polynomialφ(z) = 1 − φz satisfies|z1| > 1.
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AR(1) and Causality

• Consider the AR(1) processφ(B)Xt = Wt (with φ(B) = 1 − φB):

If |φ| > 1, we can define an equivalent causal model,

Xt − φ−1Xt−1 = W̃t,

whereW̃t is a new white noise sequence.
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AR(1) and Causality

• Is an MA(1) process causal?
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MA(1) and Invertibility

Define

Xt = Wt + θWt−1

= (1 + θB)Wt.

If |θ| < 1, we can write

(1 + θB)−1Xt = Wt

⇔ (1 − θB + θ2B2 − θ3B3 + · · · )Xt = Wt

⇔
∞∑

j=0

(−θ)jXt−j = Wt.

That is, we can writeWt as acausal function ofXt.
We say that this MA(1) isinvertible .
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MA(1) and Invertibility

Xt = Wt + θWt−1

If |θ| > 1, the sum
∑

∞

j=0(−θ)
jXt−j diverges, but we can write

Wt−1 = −θ−1Wt + θ−1Xt.

Just like the noncausal AR(1), we can show that

Wt = −
∞∑

j=1

(−θ)−jXt+j .

That is, we can writeWt as a linear function ofXt, but it is not causal.

We say that this MA(1) is notinvertible .
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Invertibility

A linear process{Xt} is invertible (strictly, aninvertible
function of {Wt}) if there is a

π(B) = π0 + π1B + π2B
2 + · · ·

with
∞∑

j=0

|πj | <∞

and Wt = π(B)Xt.
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MA(1) and Invertibility

• Invertibility is a property of{Xt} and {Wt}.

• Consider the MA(1) process defined byXt = θ(B)Wt (with

θ(B) = 1 + θB):

Xt = θ(B)Wt is invertible

iff |θ| < 1

iff the root z1 of the polynomialθ(z) = 1 + θz satisfies|z1| > 1.
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MA(1) and Invertibility

• Consider the MA(1) processXt = θ(B)Wt (with θ(B) = 1 + θB):

If |θ| > 1, we can define an equivalent invertible model in terms of a

new white noise sequence.

• Is an AR(1) process invertible?
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AR(p): Autoregressive models of orderp

An AR(p) process{Xt} is a stationary process that satisfies

Xt − φ1Xt−1 − · · · − φpXt−p = Wt,

where{Wt} ∼WN(0, σ2).

Equivalently, φ(B)Xt = Wt,

where φ(B) = 1 − φ1B − · · · − φpB
p.
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AR(p): Constraints on φ

Recall: Forp = 1 (AR(1)),φ(B) = 1 − φ1B.

This is an AR(1) model only if there is astationary solution to

φ(B)Xt = Wt, which is equivalent to|φ1| 6= 1.

This is equivalent to the following condition onφ(z) = 1 − φ1z:

∀z ∈ R, φ(z) = 0 ⇒ z 6= ±1

equivalently,∀z ∈ C, φ(z) = 0 ⇒ |z| 6= 1,

whereC is the set of complex numbers.
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AR(p): Constraints on φ

Stationarity: ∀z ∈ C, φ(z) = 0 ⇒ |z| 6= 1,

whereC is the set of complex numbers.

φ(z) = 1 − φ1z has one root atz1 = 1/φ1 ∈ R.

But the roots of a degreep > 1 polynomial might be complex.

For stationarity, we want the roots ofφ(z) to avoid theunit circle ,

{z ∈ C : |z| = 1}.
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AR(p): Stationarity and causality

Theorem: A (unique)stationary solution toφ(B)Xt = Wt

exists iff

φ(z) = 1 − φ1z − · · · − φpz
p = 0 ⇒ |z| 6= 1.

This AR(p) process iscausal iff

φ(z) = 1 − φ1z − · · · − φpz
p = 0 ⇒ |z| > 1.
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Recall: Causality

A linear process{Xt} is causal(strictly, acausal function
of {Wt}) if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∞∑

j=0

|ψj | <∞

and Xt = ψ(B)Wt.

26



AR(p): Roots outside the unit circle implies causal (Details)

∀z ∈ C, |z| ≤ 1 ⇒ φ(z) 6= 0

⇔ ∃{ψj}, δ > 0, ∀|z| ≤ 1 + δ,
1

φ(z)
=

∞∑

j=0

ψjz
j .

⇒ ∀|z| ≤ 1 + δ, |ψjz
j | → 0,

(

|ψj |
1/j|z|

)j

→ 0

⇒ ∃j0, ∀j ≥ j0, |ψj |
1/j ≤

1

1 + δ/2
⇒

∞∑

j=0

|ψj | <∞.

So if |z| ≤ 1 ⇒ φ(z) 6= 0, thenSm =
m∑

j=0

ψjB
jWt converges in mean

square, so we have a stationary, causal time seriesXt = φ−1(B)Wt.
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Calculating ψ for an AR(p): matching coefficients

Example: Xt = ψ(B)Wt ⇔ (1 − 0.5B + 0.6B2)Xt = Wt,

so 1 = ψ(B)(1 − 0.5B + 0.6B2)

⇔ 1 = (ψ0 + ψ1B + ψ2B
2 + · · · )(1 − 0.5B + 0.6B2)

⇔ 1 = ψ0,

0 = ψ1 − 0.5ψ0,

0 = ψ2 − 0.5ψ1 + 0.6ψ0,

0 = ψ3 − 0.5ψ2 + 0.6ψ1,

...
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Calculating ψ for an AR(p): example

⇔ 1 = ψ0, 0 = ψj (j ≤ 0),

0 = ψj − 0.5ψj−1 + 0.6ψj−2

⇔ 1 = ψ0, 0 = ψj (j ≤ 0),

0 = φ(B)ψj .

We can solve theselinear difference equations in several ways:

• numerically, or

• by guessing the form of a solution and using an inductive proof, or

• by using the theory of linear difference equations.
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Calculating ψ for an AR(p): general case

φ(B)Xt = Wt, ⇔ Xt = ψ(B)Wt

so 1 = ψ(B)φ(B)

⇔ 1 = (ψ0 + ψ1B + · · · )(1 − φ1B − · · · − φpB
p)

⇔ 1 = ψ0,

0 = ψ1 − φ1ψ0,

0 = ψ2 − φ1ψ1 − φ2ψ0,

...

⇔ 1 = ψ0, 0 = ψj (j < 0),

0 = φ(B)ψj .
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ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process{Xt} is a stationary process that

satisfies

Xt−φ1Xt−1−· · ·−φpXt−p = Wt +θ1Wt−1+ · · ·+θqWt−q,

where{Wt} ∼WN(0, σ2).

• AR(p) = ARMA(p,0): θ(B) = 1.

• MA(q) = ARMA(0,q): φ(B) = 1.
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ARMA processes

Can accurately approximate many stationary processes:

For any stationary process with autocovarianceγ, and anyk >

0, there is an ARMA process{Xt} for which

γX(h) = γ(h), h = 0, 1, . . . , k.
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ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process{Xt} is a stationary process that

satisfies

Xt−φ1Xt−1−· · ·−φpXt−p = Wt +θ1Wt−1+ · · ·+θqWt−q,

where{Wt} ∼WN(0, σ2).

Usually, we insist thatφp, θq 6= 0 and that the polynomials

φ(z) = 1 − φ1z − · · · − φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q

have no common factors. This implies it is not a lower order ARMA model.
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