Introduction to Time Series Analysis. Lecture 4. Peter Bartlett

Last lecture:

- 1. Sample autocorrelation function
- 2. ACF and prediction
- 3. Properties of the ACF

Introduction to Time Series Analysis. Lecture 4. Peter Bartlett

- 1. Review: ACF, sample ACF.
- 2. Properties of estimates of μ and ρ .
- 3. Convergence in mean square.

Mean, Autocovariance, Stationarity

A time series $\{X_t\}$ has **mean function** $\mu_t = \mathrm{E}[X_t]$ and **autocovariance function**

$$\gamma_X(t+h,t) = \operatorname{Cov}(X_{t+h}, X_t)$$
$$= \operatorname{E}[(X_{t+h} - \mu_{t+h})(X_t - \mu_t)].$$

It is **stationary** if both are independent of t.

Then we write $\gamma_X(h) = \gamma_X(h, 0)$.

The autocorrelation function (ACF) is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}(X_{t+h}, X_t).$$

Estimating the ACF: Sample ACF

For observations x_1, \ldots, x_n of a time series,

the sample mean is
$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$
.

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}),$$

for -n < h < n.

The sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

Properties of the autocovariance function

For the autocovariance function γ of a stationary time series $\{X_t\}$,

- 1. $\gamma(0) \geq 0$,
- $2. |\gamma(h)| \le \gamma(0),$
- 3. $\gamma(h) = \gamma(-h)$,
- 4. γ is positive semidefinite.

Furthermore, any function $\gamma: \mathbb{Z} \to \mathbb{R}$ that satisfies (3) and (4) is the autocovariance of some stationary (Gaussian) time series.

Introduction to Time Series Analysis. Lecture 4.

- 1. Review: ACF, sample ACF.
- 2. Properties of estimates of μ and ρ .
- 3. Convergence in mean square.

Properties of the sample autocovariance function

The sample autocovariance function:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}), \qquad \text{for } -n < h < n.$$

For any sequence x_1, \ldots, x_n , the sample autocovariance function $\hat{\gamma}$ satisfies

- 1. $\hat{\gamma}(h) = \hat{\gamma}(-h)$,
- 2. $\hat{\gamma}$ is positive semidefinite, and hence
- 3. $\hat{\gamma}(0) \geq 0$ and $|\hat{\gamma}(h)| \leq \hat{\gamma}(0)$.

Properties of the sample autocovariance function: psd

$$\hat{\Gamma}_n = \begin{pmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(n-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(n-1) & \hat{\gamma}(n-2) & \cdots & \hat{\gamma}(0) \end{pmatrix}$$

$$= \frac{1}{n} M M', \qquad \text{(see next slide)}$$
so $a' \hat{\Gamma}_n a = \frac{1}{n} (a' M) (M' a)$

$$= \frac{1}{n} \|M' a\|^2$$

$$\geq 0,$$

i.e., Γ_n is a covariance matrix. It is also important for forecasting.

Properties of the sample autocovariance function: psd

$$M = \begin{pmatrix} 0 & \cdots & 0 & 0 & \tilde{X}_1 & \tilde{X}_2 & \cdots & \tilde{X}_n \\ 0 & \cdots & 0 & \tilde{X}_1 & \tilde{X}_2 & \cdots & \tilde{X}_n & 0 \\ 0 & \cdots & \tilde{X}_1 & \tilde{X}_2 & \cdots & \tilde{X}_n & 0 & 0 \\ \vdots & \vdots & & & & \vdots \\ \tilde{X}_1 & \tilde{X}_2 & \cdots & \tilde{X}_n & 0 & \cdots & 0 \end{pmatrix}.$$

and $\tilde{X}_t = X_t - \mu$.

How good is \bar{X}_n as an estimate of μ ?

For a stationary process $\{X_t\}$, the sample average,

$$ar{X}_n = rac{1}{n} \left(X_1 + \dots + X_n \right)$$
 satisfies $E(ar{X}_n) = \mu,$ (unbiased)

$$\operatorname{var}(\bar{X}_n) = \frac{1}{n} \sum_{h=-n}^{n} \left(1 - \frac{|h|}{n} \right) \gamma(h).$$

Estimating the ACF: Sample ACF

To see why:
$$\operatorname{var}(\bar{X}_n) = \operatorname{E}\left(\frac{1}{n}\sum_{i=1}^n X_i - \mu\right) \left(\frac{1}{n}\sum_{j=1}^n X_j - \mu\right)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sum_{j=1}^n \operatorname{E}(X_i - \mu)(X_j - \mu)$$
$$= \frac{1}{n^2}\sum_{i,j} \gamma(i - j)$$
$$= \frac{1}{n}\sum_{h=-(n-1)}^{n-1} \left(1 - \frac{|h|}{n}\right) \gamma(h).$$

Since
$$\operatorname{var}(\bar{X}_n) = \frac{1}{n} \sum_{h=-n}^{n} \left(1 - \frac{|h|}{n}\right) \gamma(h),$$

if
$$\lim_{h\to\infty} \gamma(h) = 0$$
, $\operatorname{var}(\bar{X}_n) \to 0$.

Also, since
$$\operatorname{var}(\bar{X}_n) = \frac{1}{n} \sum_{h=-n}^{n} \left(1 - \frac{|h|}{n}\right) \gamma(h),$$

if
$$\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty, \ n \operatorname{var}(\bar{X}_n) \to \sum_{h=-\infty}^{\infty} \gamma(h) = \sigma^2 \sum_{h=-\infty}^{\infty} \rho(h).$$

Compare this to the uncorrelated case....

$$n \operatorname{var}(\bar{X}_n) \to \sigma^2 \sum_{h=-\infty}^{\infty} \rho(h).$$

i.e., instead of $var(\bar{X}_n) \approx \frac{\sigma^2}{n}$, we have $var(\bar{X}_n) \approx \frac{\sigma^2}{n/\tau}$,

with $\tau=\sum_h \rho(h).$ The effect of the correlation is a reduction of sample size from n to $n/\tau.$

Estimating μ : Asymptotic distribution

Why are we interested in asymptotic distributions?

• If we know the asymptotic distribution of \bar{X}_n , we can use it to construct hypothesis tests,

e.g., is
$$\mu = 0$$
?

• Similarly for the asymptotic distribution of $\hat{\rho}(h)$, e.g., is $\rho(1) = 0$?

Notation: $X_n \sim AN(\mu_n, \sigma_n^2)$ means 'asymptotically normal':

$$\frac{X_n - \mu_n}{\sigma_n} \stackrel{d}{\to} Z$$
, where $Z \sim N(0, 1)$.

Estimating μ for a linear process: Asymptotically normal

Theorem (A.5) For a linear process $X_t = \mu + \sum_j \psi_j W_{t-j}$, if $\sum \psi_j \neq 0$, then

$$ar{X}_n \sim AN\left(\mu_x,rac{V}{n}
ight),$$
 where $V=\sum_{h=-\infty}^{\infty}\gamma(h)$ $=\sigma_w^2\left(\sum_{j=-\infty}^{\infty}\psi_j
ight)^2.$

$$(X \sim AN(\mu_n, \sigma_n) \text{ means } \sigma_n^{-1}(X_n - \mu_n) \xrightarrow{d} Z.)$$

Estimating μ for a linear process

Recall: for a linear process $X_t = \mu + \sum_j \psi_j W_{t-j}$,

$$\gamma_X(h) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{h+j},$$

so
$$\lim_{n \to \infty} n \operatorname{var}(\bar{X}_n) = \lim_{n \to \infty} \sum_{h = -(n-1)}^{n-1} \left(1 - \frac{|h|}{n}\right) \gamma(h)$$

$$= \lim_{n \to \infty} \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j \sum_{h=-(n-1)}^{n-1} \left(\psi_{j+h} - \frac{|h|}{n} \psi_{j+h} \right)$$

$$= \sigma_w^2 \left(\sum_{j=-\infty}^{\infty} \psi_j \right)^2.$$

Estimating the ACF: Sample ACF for White Noise

Theorem For a white noise process W_t ,

$$\text{if } \mathsf{E}(W_t^4) < \infty,$$

$$\begin{pmatrix} \hat{\rho}(1) \\ \vdots \\ \hat{\rho}(K) \end{pmatrix} \sim AN\left(0, \frac{1}{n}I\right).$$

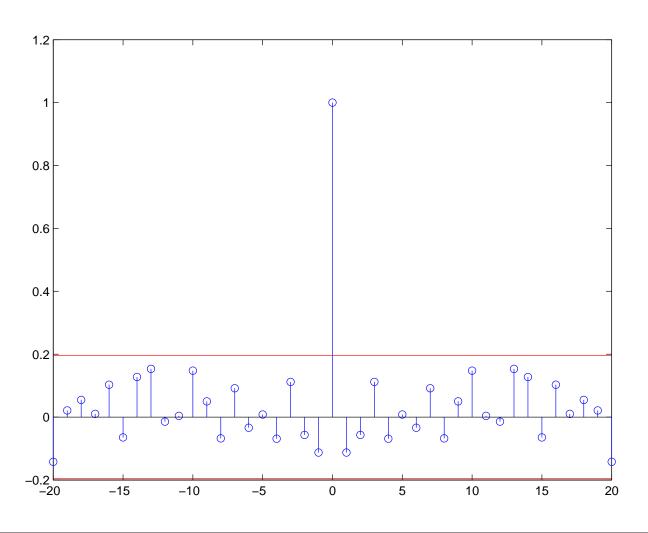
Sample ACF and testing for white noise

If $\{X_t\}$ is white noise, we expect no more than $\approx 5\%$ of the peaks of the sample ACF to satisfy

$$|\hat{\rho}(h)| > \frac{1.96}{\sqrt{n}}.$$

This is useful because we often want to introduce transformations that reduce a time series to white noise.

Sample ACF for white Gaussian (hence i.i.d.) noise



Estimating the ACF: Sample ACF

Theorem (A.7) For a linear process $X_t = \mu + \sum_j \psi_j W_{t-j}$, if $E(W_t^4) < \infty$,

$$\begin{pmatrix} \hat{\rho}(1) \\ \vdots \\ \hat{\rho}(K) \end{pmatrix} \sim AN \begin{pmatrix} \begin{pmatrix} \rho(1) \\ \vdots \\ \rho(K) \end{pmatrix}, \frac{1}{n}V \end{pmatrix},$$

where
$$V_{i,j} = \sum_{h=1}^{\infty} (\rho(h+i) + \rho(h-i) - 2\rho(i)\rho(h))$$

 $\times (\rho(h+j) + \rho(h-j) - 2\rho(j)\rho(h))$.

Notice: If $\rho(i) = 0$ for all $i \neq 0$, V = I.

Sample ACF for MA(1)

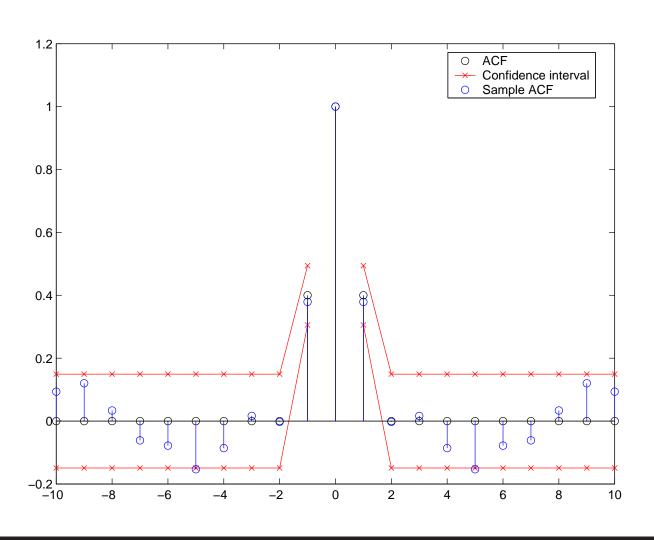
Recall: $\rho(0)=1,$ $\rho(\pm 1)=\frac{\theta}{1+\theta^2},$ and $\rho(h)=0$ for |h|>1. Thus,

$$V_{1,1} = \sum_{h=1}^{\infty} \left(\rho(h+1) + \rho(h-1) - 2\rho(1)\rho(h)\right)^2 = (\rho(0) - 2\rho(1)^2)^2 + \rho(1)^2$$

$$V_{2,2} = \sum_{h=1}^{\infty} (\rho(h+2) + \rho(h-2) - 2\rho(2)\rho(h))^2 = \sum_{h=-1}^{1} \rho(h)^2.$$

And if $\hat{\rho}$ is the sample ACF from a realization of this MA(1) process, then with probability 0.95,

$$|\hat{\rho}(h) - \rho(h)| \le 1.96\sqrt{\frac{V_{hh}}{n}}.$$



Introduction to Time Series Analysis. Lecture 4.

- 1. Review: ACF, sample ACF.
- 2. Properties of estimates of μ and ρ .
- 3. Convergence in mean square.

Convergence in Mean Square

• Recall the definition of a linear process:

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j W_{t-j}$$

- What do we mean by these infinite sums of random variables? i.e., what is the 'limit' of a sequence of random variables?
- Many types of convergence:
 - 1. Convergence in distribution.
 - 2. Convergence in probability.
 - 3. Convergence in mean square.

Convergence in Mean Square

Definition: A sequence of random variables S_1, S_2, \ldots **converges in mean square** if there is a random variable Y for which

$$\lim_{n\to\infty} E(S_n - Y)^2 = 0$$

Example: Linear Processes

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j W_{t-j}$$

Then if $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$,

- $(1) |X_t| < \infty \text{ a.s.}$
- (2) $\sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \text{ converges in mean square}$

Example: Linear Processes (Details)

(1)
$$P(|X_t| \ge \alpha) \le \frac{1}{\alpha} \mathbb{E}|X_t|$$
 (Markov's inequality)
$$\le \frac{1}{\alpha} \sum_{j=-\infty}^{\infty} |\psi_j| \mathbb{E}|W_{t-j}|$$
 $\le \frac{\sigma}{\alpha} \sum_{j=-\infty}^{\infty} |\psi_j|$ (Jensen's inequality)
$$\to 0.$$

Example: Linear Processes (Details)

For (2):

The **Riesz-Fisher Theorem** (Cauchy criterion):

 S_n converges in mean square iff

$$\lim_{m,n\to\infty} E(S_m - S_n)^2 = 0.$$

Example: Linear Processes (Details)

(2)
$$S_n = \sum_{j=-n}^n \psi_j W_{t-j}$$
 converges in mean square, since

$$E(S_m - S_n)^2 = E\left(\sum_{m \le |j| \le n} \psi_j W_{t-j}\right)^2$$

$$= \sum_{m \le |j| \le n} \psi_j^2 \sigma^2$$

$$\le \sigma^2 \left(\sum_{m \le |j| \le n} |\psi_j|\right)^2$$

$$\to 0.$$

Example: AR(1)

Let X_t be the stationary solution to $X_t - \phi X_{t-1} = W_t$, where $W_t \sim WN(0, \sigma^2).$ If $|\phi| < 1$,

$$X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$$

is a solution. The same argument as before shows that this infinite sum converges in mean square, since $|\phi| < 1$ implies $\sum_{j \geq 0} |\phi^j| < \infty$.

Example: AR(1)

Furthermore, X_t is the unique stationary solution: we can check that any other stationary solution Y_t is the mean square limit:

$$\lim_{n \to \infty} \mathbf{E} \left(Y_t - \sum_{i=0}^{n-1} \phi^i W_{t-i} \right)^2 = \lim_{n \to \infty} \mathbf{E} (\phi^n Y_{t-n})^2$$
$$= 0.$$

Example: AR(1)

Let X_t be the stationary solution to

$$X_t - \phi X_{t-1} = W_t,$$

where $W_t \sim WN(0, \sigma^2)$. If $|\phi| < 1$,

$$X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}.$$

$$\phi = 1?$$

$$\phi = -1?$$

$$|\phi| > 1?$$

- 1. Properties of estimates of μ and ρ .
- 2. Convergence in mean square.