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2. Properties of estimates pfandp.

3. Convergence in mean square.




Mean, Autocovariance, Stationarity'

A time series{ X, } hasmean function p; = E[X}]
andautocovariance function

YX (t + h, t) = COV(Xt+h, Xt)
= E[(Xe4n — patn) (Xe — pe)].

It is stationary if both are independent af
Then we writeyx (h) = vx (h,0).
Theautocorrelation function (ACF) is

_ x(h)

px(h) v x (O)

— COFI’(XtH“ Xt)




‘ Estimating the ACF: Sample ACFI

For observations,, ..., x,, of atime series,

. 1 «
thesample meanis T=—)
n t=1

Thesample autocovariance functions

n—|h|

=3 @ — D) — 7).

t=1

Thesample autocorrelation functionis

for—mn < h < n.




Properties of the autocovariance functio:'

For the autocovariance functionof a stationary time seriesX; },

1. v(0) >0,

2. |y(h)| < ~(0),
3. v(h) = v(=h),

4. ~ is positive semidefinite.

Furthermore, any functiofy : Z — R that satisfies (3) and (4) is the
autocovariance of some stationary (Gaussian) time series.
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‘ Properties of the sample autocovariance functio:'

Thesample autocovariance function

n—|h|

1
n Z (Tegin) — Z) (@0 — T), for —n < h < n.
t=1

For any sequence,, ..., x,, the sample autocovariance functiosatisfies
y(h) = (=),

4 1S positive semidefinite, and hence

1.
2.
3.

7(0) = 0 and[5(h)| < 4(0).




‘ Properties of the sample autocovariance function: psl

\ An—1) 4(n—-2) - A0)

1

— MM, (see next slide)
n

1
= —(ad'M)(M'a)
n
1
= Ljara?
n

> ()

Y

l.e.,I',, IS a covariance matrix. It is also important for forecasting




‘ Properties of the sample autocovariance function: psl




Estimating I

How good isX,, as an estimate gf?

For a stationary procedsX; }, the sample average,

_ 1 ..
X, =— (X714 -+ X,) satisfies
n

var(X,) :% 3 ( - ‘—Z') ~(h).

h=—n

E(X,) = (unbiased)
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‘ Estimating the ACF: Sample ACFI
Toseewhy:  var(X,)=E (% ZXi — ,u> (:L ZXj — u)
1=1 j=1

= %ZZE(& — u)(X; —p)

i=1 j=1
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Estimating I

. _ 1 <
Since  var(X,)=- ) _ (1 _In

n
h=—n

lim v(h) =0, var(X,,) — 0.

h— oo
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Estimating I

Also, since  var(X,) = . i (1 — ‘ﬂ) v(h),

n n
h=—n

Z\'y(h)\<oo,nvar Z v(h) = o* Z p(h

h h=—o0 h=—o0

Compare this to the uncorrelated case....
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Estimating I

nvar(X,,) o’ Z p(h

h=—o0

2 0_2

e., instead ofvar(X,,) ~ O—, we havevar(X,,) ~ —,
n n/T

with 7 = >, p(h). The effect of the correlation is a reduction of sample
S|Ze fI‘OI’nn to TL/T. (c.f. mixing time.)
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‘ Estimating . Asymptotic distribution I

Why are we interested in asymptotic distributions?

If we know the asymptotic distribution of ,,, we can use it to
construct hypothesis tests,
e.g., isy = 07?

Similarly for the asymptotic distribution gf( /),
e.g.,isp(1) =07?

Notation: X,, ~ AN (u.,,,c?) means ‘asymptotically normal’:

Xn — HUn d
On

Z,whereZ ~ N(0,1).

15



‘ Estimating . for a linear process: Asymptotically normal'

Theorem (A.5)For a linear procesX; = u + Zj YiWi_j,
if > 1, #0, then

d

(X ~ AN (p,, 0,) meanss, (X, — i)
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‘ Estimating . for a linear process'

Recall: for a linear procesk; = u + Zj VWi,

yx(h) =05 Y itnij,

j=—00

lim nvar(X,)= lim nz_:l ( —@) v(h)

n— 00 n— 00 n

h=—(n—1)

e%e) n—1
: h
lim_ on Y Y Y (¢j+h — ‘_n|¢j+h>

J=—00 h=—(n—1)
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Estimating the ACF: Sample ACF for White Noise'

Theorem For a white noise proces¥’,

ifE(W) < oo,

~ AN (o, 11) .
mn
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‘ Sample ACF and testing for white noisi

If {X,} is white noise, we expect no more thaub% of the peaks of the

sample ACF to satisfy

P(h)] > %

This Is useful because we often want to introduce transfoomsithat
reduce a time series to white noise.
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‘ Sample ACF for white Gaussian (hence 1.1.d.) nois'
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‘ Estimating the ACF: Sample ACFI

Theorem (A.7)For a linear procesX; = u + Zj YiWi_j,

ifE(W) < oo,

1
7_V )

N p(l)\
oo )

whereV; ; =Y (p(h+14) + p(h — i) — 2p(i)p(h))

x (p(h+7) + p(h —j) — 2p(5)p(h)) .

Notice: If p(i) = 0foralli #0,V = 1.
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Sample ACF for MA(1) I

Recall:p(0) = 1, p(£1) = 1%z, andp(h) = 0 for || > 1. Thus,

Vii=> (p(h+1)+p(h—1) = 2p(1)p(h))* = (p(0) — 2p(1)*)? + p(1)?
h=1

oo

Vao =Y (p(h+2)+p(h—2) —2p(2)p(h)” = > p(h)*.

h=1 h=-—1

And if p is the sample ACF from a realization of this MA(1) procesgnth
with probability 0.95,
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Sample ACF for MA(1) I

T
O ACF
—x— Confidence interval
O Sample ACF
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Convergence in Mean Squarj

Recall the definition of a linear process:

oo

Xt

What do we mean by these infinite sums of random variables?
l.e., what is the ‘limit’ of a sequence of random variables?

Many types of convergence:
1. Convergence in distribution.
2. Convergence in probability.

3. Convergence in mean square.
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Convergence in Mean Squarj

Definition: A sequence of random variablés, Ss, . ..
converges in mean squard there is a random variablg
for which

lim E(S, —Y)* =0

n—aoo
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‘ Example: Linear Processej

(1)  |Xi| < cas.

(2) > 4;W,_; converges in mean square

j=—o00
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‘ Example: Linear Processes (Detaila

(1) P(| X > a) < lE\Xt| (Markov’s inequality)

1 (©.@)
< - > I EW|

j=—0o0

oo

(Jensen’s inequality)
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‘ Example: Linear Processes (Detailﬂ

For (2):

TheRiesz-Fisher Theorem(Cauchy criterion):
S, converges in mean square iff

lim E(S,, — S,)* =0.

m,n— o0
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‘ Example: Linear Processes (Detaila

n
(2)  Sp= ) ;W_; converges in mean square, since
j=—n

2

E(Sm —Su)> =E | Y ;Wi

m<|j|<n

= 2 e

m<|[j|<n

<o’ Z |25

m<|j|<n

— 0.
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‘ Example: AR(l)I

Let X; be the stationary solution t&; — ¢ X;_1 = W}, where
Wt ~ WN(O, 0'2).

If |p| <1,

o

- Zﬁbth—j

j=0
IS a solution. The same argument as before shows that tmge$um
converges in mean square, singe< 1implies) .. |¢7] < oc.
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‘ Example: AR(l)I

Furthermore X, is the unique stationary solution: we can check that any
other stationary solutiol; is the mean square limit:

n—1 2
lim E (Yt - quiwti) = lim E(¢"Y;p)?

n—aoo n—oo

i=0
= 0.
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‘ Example: AR(1)I

Let X; be the stationary solution to

Xt — oX¢1 = W,

whereW; ~ WN(0,0?).

If |p] <1,
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