Final Exam

- Open-book.
- Covers all of the course.
- Best four out of five questions.

Introduction to Time Series Analysis: Review

- 1. Time series modelling.
- 2. Time domain.
 - (a) Concepts of stationarity, ACF.
 - (b) Linear processes, causality, invertibility.
 - (c) ARMA models, forecasting, estimation.
 - (d) ARIMA, seasonal ARIMA models.
- 3. Frequency domain.
 - (a) Spectral density.
 - (b) Linear filters, frequency response.
 - (c) Nonparametric spectral density estimation.
 - (d) Parametric spectral density estimation.
 - (e) Lagged regression models.

Objectives of Time Series Analysis

1. Compact description of data. Example:

$$X_t = T_t + S_t + f(Y_t) + W_t.$$

- Interpretation. Example: Seasonal adjustment.
 Forecasting. Example: Predict unemployment.
 Control. Example: Impact of monetary policy on unemployment.
 Hypothesis testing. Example: Global warming.
- 6. Simulation. Example: Estimate probability of catastrophic events.

Time Series Modelling

- Plot the time series.
 Look for trends, seasonal components, step changes, outliers.
- 2. Transform data so that residuals are **stationary**.
 - (a) Estimate and subtract T_t, S_t .
 - (b) Differencing.
 - (c) Nonlinear transformations (log, $\sqrt{\cdot}$).
- 3. Fit model to residuals.

1. Time series modelling.

2. Time domain.

- (a) Concepts of stationarity, ACF.
- (b) Linear processes, causality, invertibility.
- (c) ARMA models, forecasting, estimation.
- (d) ARIMA, seasonal ARIMA models.
- 3. Frequency domain.
 - (a) Spectral density.
 - (b) Linear filters, frequency response.
 - (c) Nonparametric spectral density estimation.
 - (d) Parametric spectral density estimation.
 - (e) Lagged regression models.

Stationarity

 $\{X_t\}$ is strictly stationary if, for all $k, t_1, \ldots, t_k, x_1, \ldots, x_k$, and h,

 $P(X_{t_1} \le x_1, \dots, X_{t_k} \le x_k) = P(x_{t_1+h} \le x_1, \dots, X_{t_k+h} \le x_k).$

i.e., shifting the time axis does not affect the distribution.

We consider **second-order properties** only:

 $\{X_t\}$ is stationary if its mean function and autocovariance function satisfy

 $\mu_x(t) = \mathbf{E}[X_t] = \mu,$ $\gamma_x(s,t) = \operatorname{Cov}(X_s, X_t) = \gamma_x(s-t).$

NB: Constant variance: $\gamma_x(t,t) = \operatorname{Var}(X_t) = \gamma_x(0)$.

ACF and Sample ACF

The autocorrelation function (ACF) is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}(X_{t+h}, X_t).$$

For observations x_1, \ldots, x_n of a time series, the sample mean is $\bar{x} = \frac{1}{n} \sum_{t=1}^n x_t$. The sample autocovariance function is $\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}),$ for -n < h < n.

The sample autocorrelation function is $\hat{\rho}(h) = \hat{\gamma}(h) / \hat{\gamma}(0)$.

Linear Processes

An important class of stationary time series:

$$X_{t} = \mu + \sum_{j=-\infty}^{\infty} \psi_{j} W_{t-j}$$

where $\{W_{t}\} \sim WN(0, \sigma_{w}^{2})$
and μ, ψ_{j} are parameters satisfying
$$\sum_{j=-\infty}^{\infty} |\psi_{j}| < \infty.$$

e.g.: ARMA(p,q).

Causality

A linear process $\{X_t\}$ is **causal** (strictly, a **causal function** of $\{W_t\}$) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and $X_t = \psi(B)W_t$.

Invertibility

A linear process $\{X_t\}$ is **invertible** (strictly, an **invertible function of** $\{W_t\}$) if there is a

$$\pi(B) = \pi_0 + \pi_1 B + \pi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$

and $W_t = \pi(B)X_t$.

Polynomials of a complex variable

Every degree p polynomial a(z) can be factorized as

$$a(z) = a_0 + a_1 z + \dots + a_p z^p = a_p (z - z_1)(z - z_2) \cdots (z - z_p),$$

where $z_1, \ldots, z_p \in \mathbb{C}$ are called the roots of a(z). If the coefficients a_0, a_1, \ldots, a_p are all real, then c is real, and the roots are all either real or come in complex conjugate pairs, $z_i = \overline{z}_j$.

Autoregressive moving average models

An **ARMA**(**p**,**q**) **process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q}$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Also, $\phi_p, \theta_q \neq 0$ and $\phi(z), \theta(z)$ have no common factors.

Properties of ARMA(p,q) models

Theorem: If ϕ and θ have no common factors, a (unique) *stationary* solution to $\phi(B)X_t = \theta(B)W_t$ exists iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| \neq 1.$$

This ARMA(p,q) process is *causal* iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| > 1.$$

It is *invertible* iff

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q = 0. \Rightarrow |z| > 1.$$

Properties of ARMA(p,q) models

 $\phi(B)X_t = \theta(B)W_t, \quad \Leftrightarrow \quad X_t = \psi(B)W_t$ so $\theta(B) = \psi(B)\phi(B)$ $\Leftrightarrow \quad 1 + \theta_1 B + \dots + \theta_q B^q = (\psi_0 + \psi_1 B + \dots)(1 - \phi_1 B - \dots - \phi_p B^p)$ $\Leftrightarrow \quad 1 = \psi_0,$ $\theta_1 = \psi_1 - \phi_1 \psi_0,$ $\theta_2 = \psi_2 - \phi_1 \psi_1 - \dots - \phi_2 \psi_0,$

This is equivalent to $\theta_j = \phi(B)\psi_j$, with $\theta_0 = 1$, $\theta_j = 0$ for j < 0, j > q.

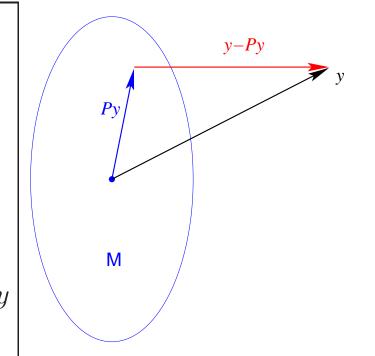
Linear prediction

Given $X_1, X_2, ..., X_n$, the best linear predictor $X_{n+m}^n = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$ of X_{n+m} satisfies the **prediction equations** $E(X_{n+m} - X_{n+m}^n) = 0$ $E[(X_{n+m} - X_{n+m}^n) X_i] = 0$ for i = 1, ..., n.

That is, the prediction errors $(X_{n+m}^n - X_{n+m})$ are uncorrelated with the prediction variables $(1, X_1, \ldots, X_n)$.

Projection Theorem

If \mathcal{H} is a Hilbert space, \mathcal{M} is a closed linear subspace of \mathcal{H} , and $y \in \mathcal{H}$, then there is a point $Py \in \mathcal{M}$ (the **projection of** y **on** \mathcal{M}) satisfying 1. $||Py - y|| \le ||w - y||$ for $w \in \mathcal{M}$, 2. ||Py - y|| < ||w - y|| for $w \in \mathcal{M}$, $w \ne y$ 3. $\langle y - Py, w \rangle = 0$ for $w \in \mathcal{M}$.



One-step-ahead linear prediction

$$X_{n+1}^{n} = \phi_{n1}X_{n} + \phi_{n2}X_{n-1} + \dots + \phi_{nn}X_{1}$$

$$\Gamma_{n}\phi_{n} = \gamma_{n},$$

$$P_{n+1}^{n} = \mathbb{E}\left(X_{n+1} - X_{n+1}^{n}\right)^{2} = \gamma(0) - \gamma_{n}'\Gamma_{n}^{-1}\gamma_{n},$$
with $\Gamma_{n} = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \gamma(n-2) \\ \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix},$

$$\phi_{n} = (\phi_{n1}, \phi_{n2}, \dots, \phi_{nn})', \quad \gamma_{n} = (\gamma(1), \gamma(2), \dots, \gamma(n))'.$$

The innovations representation

Write the best linear predictor as

$$X_{n+1}^{n} = \theta_{n1} \underbrace{\left(X_{n} - X_{n}^{n-1}\right)}_{\text{innovation}} + \theta_{n2} \left(X_{n-1} - X_{n-1}^{n-2}\right) + \dots + \theta_{nn} \left(X_{1} - X_{1}^{0}\right).$$

The innovations are uncorrelated:

$$Cov(X_j - X_j^{j-1}, X_i - X_i^{i-1}) = 0$$
 for $i \neq j$.

Yule-Walker estimation

Method of moments: We choose parameters for which the moments are equal to the empirical moments.

In this case, we choose ϕ so that $\gamma = \hat{\gamma}$.

Yule-Walker equations for $\hat{\phi}$:

$$\begin{cases} \hat{\Gamma}_p \hat{\phi} = \hat{\gamma}_p, \\ \hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}' \hat{\gamma}_p. \end{cases}$$

These are the forecasting equations.

Recursive computation: Durbin-Levinson algorithm.

Maximum likelihood estimation

Suppose that X_1, X_2, \ldots, X_n is drawn from a zero mean Gaussian ARMA(p,q) process. The likelihood of parameters $\phi \in \mathbb{R}^p$, $\theta \in \mathbb{R}^q$, $\sigma_w^2 \in \mathbb{R}_+$ is defined as the density of $X = (X_1, X_2, \ldots, X_n)'$ under the Gaussian model with those parameters:

$$L(\phi, \theta, \sigma_w^2) = \frac{1}{(2\pi)^{n/2} |\Gamma_n|^{1/2}} \exp\left(-\frac{1}{2} X' \Gamma_n^{-1} X\right),$$

where |A| denotes the determinant of a matrix A, and Γ_n is the variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of ϕ , θ , σ_w^2 maximizes this quantity.

Maximum likelihood estimation

The MLE $(\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2)$ satisfies

$$\hat{\sigma}_w^2 = \frac{S(\hat{\phi}, \hat{\theta})}{n},$$

and $\hat{\phi}, \hat{\theta}$ minimize $\log\left(\frac{S(\hat{\phi}, \hat{\theta})}{n}\right) + \frac{1}{n}\sum_{i=1}^n \log r_i^{i-1},$

where $r_i^{i-1} = P_i^{i-1} / \sigma_w^2$ and

$$S(\phi, \theta) = \sum_{i=1}^{n} \frac{\left(X_i - X_i^{i-1}\right)^2}{r_i^{i-1}}.$$

Integrated ARMA Models: ARIMA(p,d,q)

For $p, d, q \ge 0$, we say that a time series $\{X_t\}$ is an **ARIMA (p,d,q) process** if $Y_t = \nabla^d X_t = (1 - B)^d X_t$ is ARMA(p,q). We can write

 $\phi(B)(1-B)^d X_t = \theta(B)W_t.$

Multiplicative seasonal ARMA Models

For $p, q, P, Q \ge 0$, s > 0, d, D > 0, we say that a time series $\{X_t\}$ is a **multiplicative seasonal ARIMA model** (ARIMA(p,d,q)×(P,D,Q)_s)

$$\Phi(B^s)\phi(B)\nabla^D_s\nabla^d X_t = \Theta(B^s)\theta(B)W_t$$

where the *seasonal difference operator of order* D is defined by

$$\nabla_s^D X_t = (1 - B^s)^D X_t.$$

- 1. Time series modelling.
- 2. Time domain.
 - (a) Concepts of stationarity, ACF.
 - (b) Linear processes, causality, invertibility.
 - (c) ARMA models, forecasting, estimation.
 - (d) ARIMA, seasonal ARIMA models.
- 3. Frequency domain.
 - (a) Spectral density.
 - (b) Linear filters, frequency response.
 - (c) Nonparametric spectral density estimation.
 - (d) Parametric spectral density estimation.
 - (e) Lagged regression models.

Spectral density and spectral distribution function

If $\{X_t\}$ has $\sum_{h=-\infty}^{\infty} |\gamma_x(h)| < \infty$, then we define its **spectral density** as

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i\nu h}$$

for $-\infty < \nu < \infty$. We have

$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i\nu h} f(\nu) \, d\nu = \int_{-1/2}^{1/2} e^{2\pi i\nu h} \, dF(\nu),$$

where $dF(\nu) = f(\nu)d\nu$.

f measures how the variance of X_t is distributed across the spectrum.

Frequency response of a linear filter

If $\{X_t\}$ has spectral density $f_x(\nu)$ and the coefficients of the time-invariant linear filter ψ are absolutely summable, then $Y_t = \psi(B)X_t$ has spectral density

$$f_y(\nu) = \left|\psi\left(e^{2\pi i\nu}\right)\right|^2 f_x(\nu).$$

If ψ is a rational function, the transfer function is determined by the locations of its poles and zeros.

Sample autocovariance

The sample autocovariance $\hat{\gamma}(\cdot)$ can be used to give an estimate of the spectral density,

$$\hat{f}(\nu) = \sum_{h=-n+1}^{n-1} \hat{\gamma}(h) e^{-2\pi i\nu h}$$

for $-1/2 \le \nu \le 1/2$.

This is equivalent to the periodogram.

Periodogram

The periodogram is defined as

$$I(\nu) = |X(\nu)|^2 = \frac{1}{n} \left| \sum_{t=1}^n e^{-2\pi i t \nu} x_t \right|^2 = X_c^2(\nu) + X_s^2(\nu).$$
$$X_c(\nu) = \frac{1}{\sqrt{n}} \sum_{t=1}^n \cos(2\pi t \nu) x_t,$$
$$X_s(\nu) = \frac{1}{\sqrt{n}} \sum_{t=1}^n \sin(2\pi t \nu_j) x_t.$$

Asymptotic properties of the periodogram

Under general conditions (e.g., gaussian, or linear process with rapidly decaying ACF), the $X_c(\nu_j)$, $X_s(\nu_j)$ are all asymptotically independent and $N(0, f(\nu_j)/2)$, and $f(\hat{\nu}^{(n)}) \to f(\nu)$, where $\hat{\nu}^{(n)}$ is the closest Fourier frequency (k/n) to the frequency ν .

In that case, we have

$$\frac{2}{f(\nu)}I(\hat{\nu}^{(n)}) = \frac{2}{f(\nu)} \left(X_c^2(\hat{\nu}^{(n)}) + X_s^2(\hat{\nu}^{(n)}) \right) \xrightarrow{d} \chi_2^2.$$

Thus, $\mathbf{E}I(\hat{\nu}^{(n)}) \to f(\nu)$, and $\operatorname{Var}(I(\hat{\nu}^{(n)})) \to f(\nu)^2$.

Smoothed periodogram

If $f(\nu)$ is approximately constant in the band $[\nu_k - L/(2n), \nu_k + L/(2n)]$, the average of the periodogram over the band will be unbiased.

$$\hat{f}(\nu_k) = \frac{1}{L} \sum_{l=-(L-1)/2}^{(L-1)/2} I(\nu_k - l/n)$$
$$= \frac{1}{L} \sum_{l=-(L-1)/2}^{(L-1)/2} \left(X_c^2(\nu_k - l/n) + X_s^2(\nu_k - l/n) \right)$$

Then $\mathbf{E}\hat{f}(\hat{\nu}^{(n)}) \to f(\nu)$ and $\operatorname{Var}\hat{f}(\hat{\nu}^{(n)}) \to f^2(\nu)/L$.

Notice the *bias-variance trade off*.

Smoothed spectral estimators

$$\hat{f}(\nu) = \sum_{|j| \le L_n} W_n(j) I(\hat{\nu}^{(n)} - j/n),$$

where the spectral window function satisfies $L_n \to \infty$, $L_n/n \to 0$, $W_n(j) \ge 0$, $W_n(j) = W_n(-j)$, $\sum W_n(j) = 1$, and $\sum W_n^2(j) \to 0$. Then $\hat{f}(\nu) \to f(\nu)$ (in the mean square sense), and asymptotically

$$\hat{f}(\nu_k) \sim f(\nu_k) \frac{\chi_d^2}{d},$$

where $d = 2 / \sum W_n^2(j)$.

Parametric spectral density estimation

Given data x_1, x_2, \ldots, x_n ,

- 1. Estimate the AR parameters $\phi_1, \ldots, \phi_p, \sigma_w^2$.
- 2. Use the estimates $\hat{\phi}_1, \ldots, \hat{\phi}_p, \hat{\sigma}_w^2$ to compute the estimated spectral density:

$$\hat{f}_y(\nu) = \frac{\hat{\sigma}_w^2}{\left|\hat{\phi}\left(e^{-2\pi i\nu}\right)\right|^2}.$$

Parametric spectral density estimation

For large n,

$$\operatorname{Var}(\hat{f}(\nu)) \approx \frac{2p}{n} f^2(\nu).$$

Notice the *bias-variance trade off*.

Advantage over nonparametric: better *frequency resolution* of a small number of peaks. This is especially important if there is more than one peak at nearby frequencies.

Disadvantage: inflexibility (bias).

Lagged regression models

Consider a lagged regression model of the form

$$Y_t = \sum_{h=-\infty}^{\infty} \beta_h X_{t-h} + V_t,$$

where X_t is an observed input time series, Y_t is the observed output time series, and V_t is a stationary noise process.

This is useful for

- Identifying the (best linear) relationship between two time series.
- Forecasting one time series from the other.

Lagged regression in the time domain

$$Y_t = \alpha(B)X_t + \eta_t = \sum_{j=0}^{\infty} \alpha_j X_{t-j} + \eta_t,$$

- 1. Fit an ARMA model (with $\theta_x(B), \phi_x(B)$) to the input series $\{X_t\}$.
- 2. *Prewhiten* the input series by applying the inverse operator $\phi_x(B)/\theta_x(B)$.
- 3. Calculate the cross-correlation of \tilde{Y}_t with W_t , $\gamma_{\tilde{y},w}(h)$, to give an indication of the behavior of $\alpha(B)$ (for instance, the delay).
- 4. Estimate the coefficients of $\alpha(B)$ and hence fit an ARMA model for the noise series η_t .

Coherence

Define the *cross-spectrum* and the *squared coherence* function:

$$f_{xy}(\nu) = \sum_{h=-\infty}^{\infty} \gamma_{xy}(h) e^{-2\pi i\nu h},$$

$$\gamma_{xy}(h) = \int_{-1/2}^{1/2} f_{xy}(\nu) e^{2\pi i\nu h} d\nu,$$

$$\rho_{y,x}^{2}(\nu) = \frac{|f_{yx}(\nu)|^{2}}{f_{x}(\nu)f_{y}(\nu)}.$$

Lagged regression models in the frequency domain

$$Y_t = \sum_{j=-\infty}^{\infty} \beta_j X_{t-j} + V_t,$$

We compute the Fourier transform of the series $\{\beta_j\}$ in terms of the cross-spectral density and the spectral density:

$$B(\nu)f_x(\nu) = f_{yx}(\nu).$$
$$MSE = \int_{-1/2}^{1/2} f_y(\nu) \left(1 - \rho_{yx}^2(\nu)\right) d\nu.$$

Thus, $\rho_{yx}(\nu)^2$ indicates how the component of the variance of $\{Y_t\}$ at a frequency ν is accounted for by $\{X_t\}$.

Introduction to Time Series Analysis: Review

- 1. Time series modelling.
- 2. Time domain.
 - (a) Concepts of stationarity, ACF.
 - (b) Linear processes, causality, invertibility.
 - (c) ARMA models, forecasting, estimation.
 - (d) ARIMA, seasonal ARIMA models.
- 3. Frequency domain.
 - (a) Spectral density.
 - (b) Linear filters, frequency response.
 - (c) Nonparametric spectral density estimation.
 - (d) Parametric spectral density estimation.
 - (e) Lagged regression models.