Introduction to Time Series Analysis. Lecture 22.

1. Review: The smoothed periodogram.
2. Examples.

3. Parametric spectral density estimation.




Review: Periodogram.

The periodogram is defined as

1) = X ()
= XZ(v) + XZ(v).

cos(2mtv)xy,

sin(27mtv;)xy.

Under general conditionsy.(v;), Xs(v;) are asymptotically independent
) —

andN (0, f(v;)/2). Thus,EI (i f(v), but VarI(p(™)) — f(v)2.




Review: Smoothed spectral estimator'

fwy= Y Wa()HI@™ —j/n),

where thespectral window function satisfiesl,, — oo, L,,/n — 0,
Wi(§) > 0, Wi (5) = Wi (=3), > Wa(4) = 1, and> - Wi (j) — 0.

Thenf’(y) — f(v) (in the mean square sense), and asymptotically

. 2
f(vg) ~ f(Vk:)%a

whered = 2/ 3" W?2(j).
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Example: Southern Oscillation Index'

Figure 4.4 in the text shows the periodogram of the SOI tinmeseThe
SOl is the scaled, standardized, mean-adjusted, differeattveen monthly
average air pressure at sea level in Tahiti and Darwin:

SOJ — IOPTahiti - PDarWin

o

For the time series in the text,= 453 months.

The periodogram has a large peakat 0.084 cycles/sample. This
corresponds t0.084 cycles per month, or a period ©f0.084 = 11.9
months.

There are smaller peaksat= 0.02: 71(0.02) ~ 1.0. The frequency
v = 0.02 corresponds to a period 60 months, od.2 years.




Example: Southern Oscillation Index'

Consider the hypothesized Elin effect, at a period of around four years.
The approximate 95% confidence interval at this frequency,
v=1/(4 x12),is

21 21
X2<0-025) X2<0-975)
2 x 0.64 2 x 0.64

< f(v) <
7.3778 0.0506

0.17 < f(v) < 25.5.

The lower extreme of this confidence interval is around theanbaseline,
so it is difficult to conclude much about the hypothesized Ed\effect.




Example: Southern Oscillation Index'

Figure 4.5 in the text shows the smoothed periodogram, With 9.

Again, there is a large peak at= 0.08 cycles/month (period: 12 months).
There are smaller peaks at integer multiples of this frequ€harmonics).

There is also a peak at= 0.0215 (period46.5 months):f‘(().()215) ~ 0.62.




Example: Southern Oscillation Index'

The approximate 95% confidence interval at the hypothediz&tiino
frequency is

2LIV) oy < 2L
x3;(0.025) — X3, (0.975)
18 x 0.62 18 x 0.62

<
31526 /W= ga3
0.354 < f(v) < 1.36.

The lower extreme of this confidence interval is well abowertbise
baseline (the level of the spectral density if the signalenghite and the
energy were uniformly spread across frequencies).

The text modifies the number of degrees of freedom slighdlgccount for the fact that the signal is padded with zerosakaw a highly composite

number, which simplifies the computation of the periodogram




Choosing the bandwidth'

A common approach is to start with a large bandwidth, and ktdke
effect on the spectral estimates as it is reduced (‘closiagmindow’). As
the bandwidth becomes too small, the variance gets largéhaspectral
estimate becomes more jagged, with spurious peaks inteadiBut if it is
too small, the spectral estimate is excessively smoothetidatails of the
shape of the spectrum are lost.

The value ofL = 9 chosen in the text for Figure 4.5 corresponds to a
bandwidth ofB = L /n = 9/480 = 0.01875 cycles per month. This means
we are averaging over frequencies in a band of this width,sane treating
the spectral density as approximately constant over tms\walth.
Equivalently, we are not hoping to resolve frequencies mioady than
about half of this bandwidth.




\ Simultaneous confidence interval’

We derived the confidence intervals fffr) assuming that was fixed. But
In examining peaks, we might wish to choasafter we've seen the data. If

we want to make statements about the probability thalikely events
F, ..., E; occur, we can use the Bonferroni inequality (also called the
union bound):

Pr { g E} <) Pr{E},

and this probability is no more than if Pr{F;} = a. For example, iiF;
represents the event thAty; ) falls outside some confidence interval at levgl
a, then we can bound the probability that the spectral derssigr from our
estimates at any of the frequencias. . ., v;.
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Parametric versus nonparametric estimatioﬂ

Parametric estimatioa: estimate a model that is specified by a fixed
number of parameters.

Nonparametric estimatios estimate a model that is specified by a numbqr
of parameters that can grow as the sample grows.

Thus, the smoothed periodogram estimates we have condidaye
nonparametric: the estimates of the spectral density can be parameterizep
by estimated values at each of the Fourier frequencies. ésample size
grows, the number of distinct frequency values increases.

The time domain models we considered (linear processe$gaaaeetric.

For example, and ARMA(p,q) process can be completely speoriith
p + g + 1 parameters.
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Parametric spectral estimation'

In parametric spectral estimation, we consider the class of spectralitiess
corresponding to ARMA models.

Recall that, for a linear proceds = (B)W,, f,(v) = | (e*™) ]2 o2,
For an AR modely(B) = 1/¢(B), so{Y;} has the rational spectrum

% H§:1 e==m — pjl

wherep; are the poles, or roots of the polynoméal
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Parametric spectral estimation'

The typical approach to parametric spectral estimatioa isse the
maximum likelihood parameter estimates (. . . , ¢,,, 52 for the

parameters of an AR(p) model for the process, and then cantpat

spectral density for this estimated AR model:

T
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Parametric spectral estimation'

For largen,

Var(f(v) ~ 2L £2(0)

(There are results for the asymptotic distribution, buithee rather weak.)

Notice the bias-variance trade-off in the parametric casewve increase the
number of parameters;

e The bias decreases; we can model more complex spectra. &opéx
with an AR(p), we cannot have more thgy/2 | spectral peaks in the
interval (0, 1). (This is because each pair of complex conjugate poles
contributes one factor and hence peak to the product.)

e The variance increases linearly with
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‘ ARMA spectral estimation I

Sometimes ARMA models are used instead: estimate the pseesd an
ARMA(p,q) model and compute its spectral density (recadkth

(B) = 0(B)/¢(B)):

é(e—QWiy) 2
(/3(6—27m'1/)

However, it is more common to use large AR models, rather &RNA
models.
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‘ Parametric versus nonparametric spectral estimatio:'

The main advantage of parametric spectral estimation aweparametric is
that it often gives bettereguency resolution of a small number of peaks:

To keep the variance down with a parametric estimate, we toeethke

sure that we do not try to estimate too many parameters. \ithgeanay

affect the bias, even = 2 allows a sharp peak at one frequency. In contrat,
to keep the variance down with a nonparametric estimate,agd to make
sure that the bandwidth is not too small. This correspond&ating a

smooth spectral density estimate, so the frequency resolig limited.

This is especially important if there is more than one peatearby
frequencies.

The disadvantage is the inflexibility (bias) due to the usthefrestricted
class of ARMA models.
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Parametric spectral estimation: Summary'

Given datacq, zs, . .., T,,

1. Estimate the AR parametets, ..., ¢,, o2 (for example, using
Yule-Walker/least squares or maximum likelihood),
and choose a suitable model orggffor example, using
AIC.=(n+p)/(n—p—2)orBIC=plogn/n).

2. Use the estimates, . . ., ¢,, 52 to compute the estimated spectral
density:
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