
Introduction to Time Series Analysis. Lecture 20.

1. Review: The periodogram

2. Asymptotics of the periodogram.

3. Nonparametric spectral estimation.
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Review: Periodogram

The periodogram is defined as

I(ν) = |X(ν)|2

=
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n

∣

∣

∣
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∣

n
∑

t=1

e−2πitνxt

∣
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2

= X2
c (ν) +X2

s (ν).

Xc(ν) =
1√
n

n
∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n
∑

t=1

sin(2πtνj)xt.

The same as computingf(ν) from the sample autocovariance (forx̄ = 0).
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Asymptotic properties of the periodogram

We want to understand the asymptotic behavior of the periodogramI(ν) at

a particular frequencyν, asn increases. We’ll see that its expectation

converges tof(ν).

We’ll start with a simple example: Suppose thatX1, . . . , Xn are

i.i.d. N(0, σ2) (Gaussian white noise). From the definitions,

Xc(νj) =
1√
n

n
∑

t=1

cos(2πtνj)xt, Xs(νj) =
1√
n

n
∑

t=1

sin(2πtνj)xt,

we have thatXc(νj) andXs(νj) are normal, with

EXc(νj) = EXs(νj) = 0.
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Asymptotic properties of the periodogram

Also,

Var(Xc(νj)) =
σ2

n

n
∑

t=1

cos2(2πtνj)

=
σ2

2n

n
∑

t=1

(cos(4πtνj) + 1) =
σ2

2
.

Similarly, Var(Xs(νj)) = σ2/2.
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Asymptotic properties of the periodogram

Also,

Cov(Xc(νj), Xs(νj)) =
σ2

n

n
∑

t=1

cos(2πtνj) sin(2πtνj)

=
σ2

2n

n
∑

t=1

sin(4πtνj) = 0,

Cov(Xc(νj), Xc(νk)) = 0

Cov(Xs(νj), Xs(νk)) = 0

Cov(Xc(νj), Xs(νk)) = 0.

for anyj 6= k.
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Asymptotic properties of the periodogram

That is, ifX1, . . . , Xn are i.i.d.N(0, σ2)

(Gaussian white noise;f(ν) = σ2), then theXc(νj) andXs(νj) are all

i.i.d. N(0, σ2/2). Thus,

2

σ2
I(νj) =

2

σ2

(

X2
c (νj) +X2

s (νj)
)

∼ χ2
2.

So for the case of Gaussian white noise, the periodogram has achi-squared

distribution that depends on the varianceσ2 (which, in this case, is the

spectral density).
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Asymptotic properties of the periodogram

Under more general conditions (e.g., normal{Xt}, or linear process{Xt}
with rapidly decaying ACF), theXc(νj), Xs(νj) are all asymptotically

independent andN(0, f(νj)/2).

Consider a frequencyν. For a given value ofn, let ν̂(n) be the closest

Fourier frequency (that is,̂ν(n) = j/n for a value ofj that minimizes

|ν − j/n|). Asn increases,̂ν(n) → ν, and (under the same conditions that

ensure the asymptotic normality and independence of the sine/cosine

transforms),f(ν̂(n)) → f(ν). (picture)

In that case, we have

2

f(ν)
I(ν̂(n)) =

2

f(ν)

(

X2
c (ν̂

(n)) +X2
s (ν̂

(n))
)

d→ χ2
2.
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Asymptotic properties of the periodogram

Thus,

EI(ν̂(n)) =
f(ν)

2
E

(

2

f(ν)

(

X2
c (ν̂

(n)) +X2
s (ν̂

(n))
)

)

→ f(ν)

2
E(Z2

1 + Z2
2 ) = f(ν),

whereZ1, Z2 are independentN(0, 1). Thus, the periodogram is

asymptotically unbiased.
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Asymptotic properties of the periodogram

Since we know its asymptotic distribution (chi-squared), we can compute

approximate confidence intervals:

Pr

{

2

f(ν)
I(ν̂(n)) > χ2

2(α)

}

→ α,

where the cdf of aχ2
2 atχ2

2(α) is 1− α. Thus,

Pr

{

2I(ν̂(n))

χ2
2(α/2)

≤ f(ν) ≤ 2I(ν̂(n))

χ2
2(1− α/2)

}

→ 1− α.
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Asymptotic properties of the periodogram: Consistency

Unfortunately, Var(I(ν̂(n))) → f(ν)2Var(Z2
1 + Z2

2 )/4, whereZ1, Z2 are

i.i.d. N(0, 1), that is, the variance approaches a constant.

Thus,I(ν̂(n)) is not a consistent estimator off(ν). In particular, if

f(ν) > 0, then forǫ > 0, asn increases,

Pr
{∣

∣

∣
I(ν̂(n))− f(ν)

∣

∣

∣
> ǫ
}

approaches a constant.
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Asymptotic properties of the periodogram: Consistency

This means that the approximate confidence intervals we obtain are

typically wide.

The source of the difficulty is that, asn increases, we have additional data

(then values ofxt), but we use it to estimate additional independent

random variables, (then independent values ofXc(νj), Xs(νj)).

How can we reduce the variance? The typical approach is to average

independent observations. In this case, we can take an average of “nearby”

values of the periodogram, and hope that the spectral density at the

frequency of interest and at those nearby frequencies will be close.
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Nonparametric spectral estimation

Define a band of frequencies
[

νk − L

2n
, νk +

L

2n

]

of bandwidthL/n. Suppose thatf(ν) is approximately constant in this
frequency band.

Consider the followingsmoothed spectral estimator. (assumeL is odd)

f̂(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

I(νk − l/n)

=
1

L

(L−1)/2
∑

l=−(L−1)/2

(

X2
c (νk − l/n) +X2

s (νk − l/n)
)

.
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Nonparametric spectral estimation

For a suitable time series (e.g., Gaussian, or a linear process with

sufficiently rapidly decreasing autocovariance), we know that, for largen,

all of theXc(νk − l/n) andXs(νk − l/n) are approximately independent

and normal, with mean zero and variancef(νk − l/n)/2. From the

assumption thatf(ν) is approximately constant across all of these

frequencies, we have that, asymptotically,

f̂(νk) ∼ f(νk)
χ2
2L

2L
.
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Nonparametric spectral estimation

Thus,

Ef̂(ν̂(n)) ≈ f(ν)

2L
E

(

2L
∑

i=1

Z2
i

)

= f(ν),

Varf̂(ν̂(n)) ≈ f2(ν)

4L2
Var

(

2L
∑

i=1

Z2
i

)

=
f2(ν)

2L
Var(Z2

1 ),

where theZi are i.i.d.N(0, 1).

15



Nonparametric spectral estimation: confidence intervals

From the asymptotic distribution, we can define approximateconfidence

intervals as before:

Pr

{

2Lf̂(ν̂(n))

χ2
2L(α/2)

≤ f(ν) ≤ 2Lf̂(ν̂(n))

χ2
2L(1− α/2)

}

≈ 1− α.

For largeL, these will be considerably tighter than for the unsmoothed

periodogram. (But we need to be suref does not vary much over the

bandwidthL/n.)
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Nonparametric spectral estimation

Notice thebias-variance trade off:

For bandwidthB = L/n, we have Var̂f(νk) ≈ c/(Bn) for some constantc.

So we want a bigger bandwidthB to ensure low variance (bandwidth

stability).

But the larger the bandwidth, the more questionable the assumption that

f(ν) is approximately constant in the band[ν −B/2, ν +B/2]. For a

larger value ofB, our estimatêf(ν) will be a smoother function ofν. We

have thus introduced morebias (lower resolution).
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Nonparametric spectral estimation: confidence intervals

Since the asymptotic mean and variance off̂(ν̂(n)) are proportional tof(ν)
andf2(ν), it is natural to consider thelogarithm of the estimator. Then we
can define approximate confidence intervals as before:

Pr

{

2Lf̂(ν̂(n))

χ2
2L(α/2)

≤ f(ν) ≤ 2Lf̂(ν̂(n))

χ2
2L(1− α/2)

}

≈ 1− α,

Pr

{

log
(

f̂(ν̂(n))
)

+ log

(

2L

χ2
2L(α/2)

)

≤ log(f(ν)) ≤ log
(

f̂(ν̂(n))
)

+ log

(

2L

χ2
2L(1− α/2)

)}

≈ 1− α.

The width of the confidence intervals forf(ν) varies with frequency,
whereas the width of the confidence intervals forlog(f(ν)) is the same for
all frequencies.
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