Introduction to Time Series Analysis. Lecture 19.

1. Review: Spectral density estimation, sample autocaxas.
2. The periodogram and sample autocovariance.

3. Asymptotics of the periodogram.




Estimating the Spectrum: Outline'

We have seen that the spectral density gives an alternaéweof
stationary time series.

Given a realizationrq, . . ., z,, of atime series, how can we estimate
the spectral density?

One approach: replaeg ) in the definition

fw)y= > ~(h)e ™",

h=—o0

with the sample autocovarianée-).

Another approach, called tlperiodogram: compute/ (v), the squared
modulus of the discrete Fourier transform (at frequeneiesk /n).




‘Estimating the spectrum: Outline'

These two approaches adentical at the Fourier frequencies= k /n.

The asymptotic expectation of the periodogram) is f(v). We can
derive some asymptotic properties, and hence do hypottessisg.

Unfortunately, the asymptotic variance k) is constant.
It is not a consistent estimator ¢fv ).




‘ Review: Spectral density estimation I

If a time series {X;} has autocovariancey satisfying
S0 lv(h)] < oo, then we define itspectral density as

f(V): Z ,y(h)e—27ri1/h

h=—o0

for —oo < v < .




‘ Review: Sample autocovari ance'

|dea: use the sample autocovariah¢e, defined by

n—|h|
Z (g n) — ) (¢ — ), for —n < h < n,

t=1

1
n

as an estimate of the autocovariange), and then use

fy= 3 Amezmen

h=—n-+1

for—1/2 <v <1/2.




\ Discrete Fourier transform I

For a sequencer, ..., z,), define thaliscrete Fourier transform (DFT) as
(X (v9), X(v1),...,X(vn_1)), Where

andv = k/n (fork =0,1,...,n — 1) are called théourier frequencies.
(Think of {v, : £ =0,...,n — 1} as the discrete version of the frequency
rangev € [0, 1].)

First, let's show that we can view the DFT as a representatianin a
different basis, th&ourier basis.




\ Discrete Fourier transform '

Consider the spacé™ of vectors ofn complex numbers, with inner produc
(a,b) = a*b, wherea™ is the complex conjugate transpose of the vector
a e C".

Suppose thata s¢t; : 7 =0,1,...,n — 1} of n vectors inC" are
orthonormal:

1 ifj =k,
0 otherwise.

<¢j7¢k> —

Then thesg ¢, } span the vector spadé”, and so for any vectat, we can
write x in terms of this new orthonormal basis,

n—1
xr = Z<¢], ZIZ‘>¢] (picture)

J=0




\ Discrete Fourier transform '

Consider the following set of vectors inC":

1 . . : /
_ 2miv; 22V 2miny; .
{ej——(e 7,e Y 9) ]

n

It is easy to check that these vectors are orthonormal:

<6j76k> Z 2mit(ve—v;) Z <627ri(k—j)/n>t

’

if j =k,

1
2ni(k—7)/n\n .
Le 2mi(k—j)/n1=(e )" otherwise

1— e27m(k 7/ n

\
,
1 if j =k,

0 otherwise,

\




\ Discrete Fourier transform '

where we have used the fact thtaf = > ' | o satisfies
aS, =S, +a"™! —aandsaS, = a(l —a™)/(1 —«a) fora # 1.

So we can represent the real vectoe (x1,...,x,)" € C™interms of this
orthonormal basis,

n—1 n—1

T = Z(ej,a}>ej = ZX(Vj)ej.

7=0 7=0

That is, the vector of discrete Fourier transform coeffitsen
(X (vg),...,X(vyp—1)) is the representation afin the Fourier basis.




\ Discrete Fourier transform '

An alternative way to represent the DFT is by separatelyidensg the
real and imaginary parts,

X(l/j): ej,x) = Z —27mt1/3x

1
\/, Z cos(2mtv;)xy — _n tzzl sin(2wtv;)x

— Xc(Vj) —iXs(v)),

where this defines the sine and cosine transforinsand X ., of x.
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Periodogram I

The periodogram is defined as

I(v;) =

1 n
Xs(vy) = NG Zsin(27rtyj)a}t.
t=1
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Periodogram I

Sincel(v;) = | X (v;)|? for one of the Fourier frequencies = j/n (for
j=0,1,...,n — 1), the orthonormality of the; implies that we can write

*
n—1

> X (e

7=0
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Periodogram I

This is the discrete analog of the identity

1/2
=20 = [ L)

—1/2

(Think of I(v;) as the discrete version ¢{v) at the frequency,; = j/n,
and think of(1/n) > - as the discrete version ¢f -dv.)

Vi
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‘ Estimating the spectrum: Periodogram I

Why is the periodogram at a Fourier frequency (tharis; v;) the same as
computingf(v) from the sample autocovariance?

Almost the same—they are not the sameg@at 0 whenz # 0.

But if eitherz = 0, or we consider a Fourier frequengy with
jed{l,...,n—1},...
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‘ Estimating the spectrum: Periodogram I

2 n 2

1 | 1
- E :6—27mtl/jajt — E :6—27mt1/j <xt L CZ’)
n n

t=1 =
1 n
= E :6—27mt1/3 xt o $ E : 27rzt1/3 th o Qj)
n

t=1

n—1

1 : .
_ Ze—sz(s—t)yj ($8 . 3_7)(3775 . j) _ ,.’)‘/(h)e—Qﬂ'Zhl/j7
n s,t h=—n-+1

where the fact that; # 0 implies> ;" , e~ *™ = ( (we showed this
when we were verifying the orthonormality of the Fourieribpkas
allowed us to subtract the sample mean in that case.
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Asymptotic properties of the periodogram I

We want to understand the asymptotic behavior of the peg@do/(v) at
a particular frequency, asn increases. We'll see that its expectation
converges tg (v).

We’'ll start with a simple example: Suppose tiét, . .., X,, are
i.i.d. N(0,0?) (Gaussian white noise). From the definitions,

1 n
Xc(v;) = \F ZCOS 2ty )y, X(vj) = NG Zsin(thz/j)xt,
t=1

we have thatX.(v;) and X (v;) are normal, with

EX.(v;) = EX,(v;) = 0.
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Asymptotic properties of the periodogram I

Z cos? 27rtyt7

0?2 &
= — Y (cos(dmtvj)+1) = —
2n

t=1

Similarly, Var( X (v;)) = o2%/2.
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Asymptotic properties of the periodogram I

Cov(X.(v;), Xs(v;)) = % ZCOS(27Tth) sin(2mtv;)

t=1

Cov( X, (v;
Cov( X, (
Cov( X (

foranyj # k.
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Asymptotic properties of the periodogram I

Thatis, if X1,..., X, are i.i.d.N(0, o?)
(Gaussian white nois€f(v) = o), then theX.(v;) and X (v, ) are all
i.i.d. N(0,0%/2). Thus,

2 2

;I(Vj) = (X2 () + XZ(15)) ~ x5.
So for the case of Gaussian white noise, the periodogram tlaissgiuared
distribution that depends on the variance(which, in this case, is the
spectral density).
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Asymptotic properties of the periodogram I

Under more general conditions (e.g., norfual, }, or linear proces$.X; }
with rapidly decaying ACF), th&.(v;), Xs(v;) are all asymptotically
independent and/ (0, f(v;)/2).

Consider a frequency. For a given value of, let (™) be the closest
Fourier frequency (that ig;("™) = j /n for a value ofj that minimizes

v — j/n|). Asn increasesy™ — v, and (under the same conditions that
ensure the asymptotic normality and independence of tle¢caisine
transforms) f (7(™) — f(v). (picture)

In that case, we have

2
fw)

10" =
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Asymptotic properties of the periodogram I

fv) 3

El(7") = = E (— (Xg(a<”>) + Xg(aw)))

)
- Wz 4 2) = jo).

whereZ,, Z, are independenv (0, 1). Thus, the periodogram is
asymptotically unbiased.
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