
Introduction to Time Series Analysis. Lecture 18.

1. Review: Spectral density, rational spectra, linear filters.

2. Frequency response of linear filters.

3. Spectral estimation

4. Sample autocovariance

5. Discrete Fourier transform and the periodogram
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Review: Spectral density

If a time series {Xt} has autocovarianceγ satisfying
∑∞

h=−∞ |γ(h)| <∞, then we define itsspectral densityas

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν <∞. We have

γ(h) =

∫ 1/2

−1/2

e2πiνhf(ν) dν.
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Review: Rational spectra

For a linear time series withMA(∞) polynomialψ,

f(ν) = σ2
w

∣

∣ψ
(

e2πiν
)
∣

∣

2
.

If it is an ARMA(p,q), we have

f(ν) = σ2
w

∣

∣

∣

∣

θ(e−2πiν)

φ (e−2πiν)

∣

∣

∣

∣

2

= σ2
w

θ2q
∏q

j=1

∣

∣e−2πiν − zj
∣

∣

2

φ2p
∏p

j=1 |e−2πiν − pj |2
,

wherez1, . . . , zq are the zeros (roots ofθ(z))

andp1, . . . , pp are the poles (roots ofφ(z)).
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Review: Time-invariant linear filters

A filter is an operator; given a time series{Xt}, it maps to a time series
{Yt}. A linear filter satisfies

Yt =
∞
∑

j=−∞

at,jXj .

time-invariant: at,t−j = ψj :

Yt =

∞
∑

j=−∞

ψjXt−j .

causal: j < 0 impliesψj = 0.

Yt =
∞
∑

j=0

ψjXt−j.
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Time-invariant linear filters

The operation
∞
∑

j=−∞

ψjXt−j

is called theconvolutionof X with ψ.
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Time-invariant linear filters

The sequenceψ is also called theimpulse response, since the output{Yt} of

the linear filter in response to aunit impulse,

Xt =







1 if t = 0,

0 otherwise,

is

Yt = ψ(B)Xt =
∞
∑

j=−∞

ψjXt−j = ψt.
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Frequency response of a time-invariant linear filter

Suppose that{Xt} has spectral densityfx(ν) andψ is stable, that is,
∑∞

j=−∞ |ψj | <∞. ThenYt = ψ(B)Xt has spectral density

fy(ν) =
∣

∣ψ
(

e2πiν
)∣

∣

2
fx(ν).

The functionν 7→ ψ(e2πiν) (the polynomialψ(z) evaluated on the unit

circle) is known as thefrequency responseor transfer functionof the linear

filter.

The squared modulus,ν 7→ |ψ(e2πiν)|2 is known as thepower transfer

functionof the filter.
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Frequency response of a time-invariant linear filter

For stableψ, Yt = ψ(B)Xt has spectral density

fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
fx(ν).

We have seen that a linear process,Yt = ψ(B)Wt, is a special case, since

fy(ν) = |ψ(e2πiν)|2σ2
w = |ψ(e2πiν)|2fw(ν).

When we pass a time series{Xt} through a linear filter, the spectral density

is multiplied, frequency-by-frequency, by the squared modulus of the

frequency responseν 7→ |ψ(e2πiν)|2.

This is a version of the equality Var(aX) = a2Var(X), but the equality is

true for the component of the variance at every frequency.

This is also the origin of the name ‘filter.’
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Frequency response of a filter: Details

Why isfy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
fx(ν)? First,

γy(h) = E





∞
∑

j=−∞

ψjXt−j

∞
∑

k=−∞

ψkXt+h−k





=
∞
∑

j=−∞

ψj

∞
∑

k=−∞

ψkE [Xt+h−kXt−j ]

=

∞
∑

j=−∞

ψj

∞
∑

k=−∞

ψkγx(h+ j − k) =

∞
∑

j=−∞

ψj

∞
∑

l=−∞

ψh+j−lγx(l).

It is easy to check that
∑∞

j=−∞ |ψj | <∞ and
∑∞

h=−∞ |γx(h)| <∞ imply

that
∑∞

h=−∞ |γy(h)| <∞. Thus, the spectral density ofy is defined.
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Frequency response of a filter: Details

fy(ν) =

∞
∑

h=−∞

γ(h)e−2πiνh

=
∞
∑

h=−∞

∞
∑

j=−∞

ψj

∞
∑

l=−∞

ψh+j−lγx(l)e
−2πiνh

=
∞
∑

j=−∞

ψje
2πiνj

∞
∑

l=−∞

γx(l)e
−2πiνl

∞
∑

h=−∞

ψh+j−le
−2πiν(h+j−l)

= ψ(e2πiνj)fx(ν)

∞
∑

h=−∞

ψhe
−2πiνh

=
∣

∣ψ(e2πiνj)
∣

∣

2
fx(ν).
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Frequency response: Examples

For a linear processYt = ψ(B)Wt, fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
σ2
w.

For an ARMA model,ψ(B) = θ(B)/φ(B), so{Yt} has the rational

spectrum

fy(ν) = σ2
w

∣

∣

∣

∣

θ(e−2πiν)

φ (e−2πiν)

∣

∣

∣

∣

2

= σ2
w

θ2q
∏q

j=1

∣

∣e−2πiν − zj
∣

∣

2

φ2p
∏p

j=1 |e−2πiν − pj |2
,

wherepj andzj are the poles and zeros of the rational function

z 7→ θ(z)/φ(z).
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Frequency response: Examples

Consider the moving average

Yt =
1

2k + 1

k
∑

j=−k

Xt−j .

This is a time invariant linear filter (but it is not causal). Its transfer function

is the Dirichlet kernel

ψ(e−2πiν) = Dk(2πν) =
1

2k + 1

k
∑

j=−k

e−2πijν

=







1 if ν = 0,
sin(2π(k+1/2)ν)
(2k+1) sin(πν) otherwise.
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Example: Moving average
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Transfer function of moving average (k=5)
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Example: Moving average
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Squared modulus of transfer function of moving average (k=5)

This is alow-pass filter: It preserves low frequencies and diminishes high

frequencies. It is often used to estimate a monotonic trend component of a

series.
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Example: Differencing

Consider the first difference

Yt = (1−B)Xt.

This is a time invariant, causal, linear filter.

Its transfer function is

ψ(e−2πiν) = 1− e−2πiν ,

so |ψ(e−2πiν)|2 = 2(1− cos(2πν)).
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Example: Differencing
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Transfer function of first difference

This is ahigh-pass filter: It preserves high frequencies and diminishes low

frequencies. It is often used to eliminate a trend componentof a series.
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Estimating the Spectrum: Outline

• We have seen that the spectral density gives an alternative view of

stationary time series.

• Given a realizationx1, . . . , xn of a time series, how can we estimate

the spectral density?

• One approach: replaceγ(·) in the definition

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

with the sample autocovarianceγ̂(·).

• Another approach, called theperiodogram: computeI(ν), the squared

modulus of the discrete Fourier transform (at frequenciesν = k/n).
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Estimating the spectrum: Outline

• These two approaches areidenticalat the Fourier frequenciesν = k/n.

• The asymptotic expectation of the periodogramI(ν) is f(ν). We can

derive some asymptotic properties, and hence do hypothesistesting.

• Unfortunately, the asymptotic variance ofI(ν) is constant.

It is not a consistent estimator off(ν).

• We can reduce the variance by smoothing the periodogram—averaging

over adjacent frequencies. If we average over a narrower range as

n→ ∞, we can obtain a consistent estimator of the spectral density.
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Estimating the spectrum: Sample autocovariance

Idea: use the sample autocovarianceγ̂(·), defined by

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n,

as an estimate of the autocovarianceγ(·), and then use a sample version of

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

That is, for−1/2 ≤ ν ≤ 1/2, estimatef(ν) with

f̂(ν) =

n−1
∑

h=−n+1

γ̂(h)e−2πiνh.
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Estimating the spectrum: Periodogram

Another approach to estimating the spectrum is called the periodogram. It

was proposed in 1897 by Arthur Schuster (at Owens College, which later

became part of the University of Manchester), who used it to investigate

periodicity in the occurrence of earthquakes, and in sunspot activity.

Arthur Schuster, “On Lunar and Solar Periodicities of Earthquakes,”Proceedings of

the Royal Society of London, Vol. 61 (1897), pp. 455–465.

To define the periodogram, we need to introduce thediscrete Fourier

transformof a finite sequencex1, . . . , xn.
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Discrete Fourier transform

For a sequence(x1, . . . , xn), define thediscrete Fourier transform (DFT)as

(X(ν0), X(ν1), . . . , X(νn−1)), where

X(νk) =
1√
n

n
∑

t=1

xte
−2πiνkt,

andνk = k/n (for k = 0, 1, . . . , n− 1) are called theFourier frequencies.

(Think of {νk : k = 0, . . . , n− 1} as the discrete version of the frequency

rangeν ∈ [0, 1].)

First, let’s show that we can view the DFT as a representationof x in a

different basis, theFourier basis.
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Discrete Fourier transform

Consider the spaceCn of vectors ofn complex numbers, with inner product
〈a, b〉 = a∗b, wherea∗ is the complex conjugate transpose of the vector
a ∈ Cn.

Suppose that a set{φj : j = 0, 1, . . . , n− 1} of n vectors inCn are
orthonormal:

〈φj , φk〉 =







1 if j = k,

0 otherwise.

Then these{φj} span the vector spaceCn, and so for any vectorx, we can
write x in terms of this new orthonormal basis,

x =

n−1
∑

j=0

〈φj , x〉φj . (picture)
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Discrete Fourier transform

Consider the following set ofn vectors inCn:
{

ej =
1√
n

(

e2πiνj , e2πi2νj , . . . , e2πinνj
)′

: j = 0, . . . , n− 1

}

.

It is easy to check that these vectors are orthonormal:

〈ej , ek〉 =
1

n

n
∑

t=1

e2πit(νk−νj) =
1

n

n
∑

t=1

(

e2πi(k−j)/n
)t

=







1 if j = k,
1
ne

2πi(k−j)/n 1−(e2πi(k−j)/n)n

1−e2πi(k−j)/n otherwise

=







1 if j = k,

0 otherwise,
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Discrete Fourier transform

where we have used the fact thatSn =
∑n

t=1 α
t satisfies

αSn = Sn + αn+1 − α and soSn = α(1− αn)/(1− α) for α 6= 1.

So we can represent the real vectorx = (x1, . . . , xn)
′ ∈ Cn in terms of this

orthonormal basis,

x =
n−1
∑

j=0

〈ej , x〉ej =
n−1
∑

j=0

X(νj)ej .

That is, the vector of discrete Fourier transform coefficients

(X(ν0), . . . , X(νn−1)) is the representation ofx in the Fourier basis.
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Discrete Fourier transform

An alternative way to represent the DFT is by separately considering the

real and imaginary parts,

X(νj) = 〈ej , x〉 =
1√
n

n
∑

t=1

e−2πitνjxt

=
1√
n

n
∑

t=1

cos(2πtνj)xt − i
1√
n

n
∑

t=1

sin(2πtνj)xt

= Xc(νj)− iXs(νj),

where this defines the sine and cosine transforms,Xs andXc, of x.
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