Introduction to Time Series Analysis. Lecture 17.

. Review: Spectral distribution function, spectral dgnsi
. Rational spectra. Poles and zeros.
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. Time-invariant linear filters
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Review: Spectral density and spectral distribution functbn.

If a time series {X;} has autocovariancey satisfying
> oo o |v(h)] < oo, then we define itspectral densityas

fr)= 2 a(h)e ™"

h=—o0

for —oo < v < co. We have

1/2

1/2 ' '
/ 627m1/hf(y) dy — / 627m1/h dF(V),

—1/2 —1/2

wheredF'(v) = f(v)dv.

f measures how the variance &f Is distributed across the spectrum.




Review: Spectral density of a linear proces'

If X, is alinear process, it can be writtéfy = >~ 1, W;_; = ¢(B)W4.
Then

F) =l [ ()|

That is, the spectral densiff(v) of a linear process measures the modulu
of they (MA(o0)) polynomial at the poin¢*™* on the unit circle.




Spectral density of a linear procesj

For an ARMA(p,q), v (B) = 0(B)/¢(B), so
5 9(6—27T7ju)9(627m'1/)

flv) = oy & (e—2miv) g (e2miv)

5 9(6—27Tz'1/) 2

w ¢ (6—27m'1/)

This is known as @ational spectrum

= 0




‘ Rational spectra'

Consider the factorization éfand¢ as
0(z) = 0q(z — 21)(2 — 22) - - (2 — 2]
O(2) = ¢p(z —p1)(z2 = p2) -~ (2 — pp),

wherez, ..., 2z, andpy, ..., p, are called theerosandpoles
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‘ Rational spectra'

2 q —2miv .
2 9q j=1 ’e Zj

o B - 5 -

‘ 2

flv) =

As v varies from0 to 1/2, e=?™ moves clockwise around the unit circle
fromltoe ™ = —1.

And the value off () goes up as this point moves closer to (further from)
the poleg, (zerosz;).




‘ Example: ARMA I

Recall AR(1):¢(z) =1 — ¢1z. The poleis atl /¢;. If ¢1 > 0, the pole is
to the right ofl, so the spectral density decreases asoves away frond.
If 1 < 0, the pole is to the left of-1, so the spectral density is at its
maximum whenv = 0.5.

Recall MA(1):0(z) =1+ 0,z. The zero is at-1/6,. If 6, > 0, the zero is
to the left of—1, so the spectral density decreases asoves towards-1.

If 6; < 0, the zero is to the right af, so the spectral density is at its
minimum whenv = 0.




‘ Example: AR(Z)I

ConsiderX; = ¢1 X;_1 + 92 X:_o + W;. Example 4.6 in the text considers
this model with¢; = 1, ¢2 = —0.9, ando?, = 1. In this case, the poles are
atpy, po ~ 0.5555 + i0.8958 ~~ 1.054e%1-01567 ~ 1 (54 %27i0.16165

Thus, we have

2
Tw

— G2 le~2miv — pi[2|e—2miv — po|2’

fv)

and this gets very peaked when?™*" passes nedr.(054e—270-16165,




Example: AR(2)

Spectral density of AR(2): Xt = Xt_1 -0.9 Xt_2 + Wt

| | Il
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‘ Example: Seasonal ARMéI

ConsiderX; = &1 X;_15 + W,.

B 1
- 1— &, B2’

(B)

fv) =0 :

W(1 — dye—2mil2v)(1 — @ e2mil2y)
5 1
o .

Y1 — 2Py cos(24nv) + DF

Notice thatf(v) is periodic with periodl /12.
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Example: Seasonal ARM

Spectral density of AR(1),,: X, =+0.2 X _,, + W,

0.1 0.2 0.3 0.4
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‘ Example: Seasonal ARMéI

1—d22 =0 <« z:rew,

Another view:

with r— |(I)1‘_1/12, €i129 _ e—z'arg(CI)l).

For®; > 0, the twelve poles are &b, |~/ 12e?7/6 for
k=0,%1,...,45,6.

So the spectral density gets peaked a& ¥ passes near
|<I>1\_1/12 % {17 e—m/6’ e_”/?’, e_”/Q, e—i2ﬂ'/3’ e—i57r/6’ _1}_
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Example: Multiplicative seasonal ARMAI

Consider(1 — &1 B*#)(1 — ¢1B)X; = W,.

1
2
F) = 70 =20, cos(@m0) + $3)(1 = 261 cos(2m) + 37)

This is a scaled product of the AR(1) spectrum and the (pEiddR (1)
spectrum.

The AR(1), poles give peaks whetT 2™ is at one of the 12th roots adf
the AR(1) poles give a peak near?™* = 1.
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Example: Multiplicative seasonal ARMAI

Spectral density of AR(1)AR(1)12: (1+0.5 B)(1+0.2 Blz) X =W,

0.1 0.15 0.2
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Time-invariant linear filters '

A filter is an operator; given a time seri¢X; }, it maps to a time series
{Y;}. We can think of a linear process; = Z;?io y;Wy_,; as the output of
acausal linear filterwith a white noise input.

A time series|Y; } is the output of a linear filter
A=A{a;:t,j€Z}withinput{X,} if

oo

Y;: Z at,ij.

j=—o0

If a;;—; Is independent of (a;:—; = 1;), then we say that th
filter is time-invariant
If ¢, = 0 for j < 0, we say the filter) is causal

We’'ll see that the name ‘filter’ arises from the frequency aomviewpoint.
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‘Time-invariant linear filters: Examples I

1. Y, = X_; is linear, but not time-invariant.

2. Y; = £(X4—1 + Xt + Xy¢41) is linear, time-invariant, but not causal:

if 7] <1,

1
0=
S

otherwise.

3. For polynomialss(B), 8( B) with roots outside the unit circle,
Y(B) = 0(B)/¢(B) is a linear, time-invariant, causal filter.
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Time-invariant linear filters I

The operation

Z Vi Xe—j

j=—00

IS called theconvolutionof X with .
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Time-invariant linear filters '

The sequence is also called thempulse responseince the outpufY; } of
the linear filter in response toumit impulse,

1 ift=0,

0 otherwise,

X =

Vi =9(B)X; = Z Vi Xi—j = Py

j=—00
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‘ Frequency response of a time-invariant linear fiIterI

Suppose that X;} has spectral densitf,. (v) and is stable that is,
> o2 o [t5] < oo. ThenY; = ¢(B) X, has spectral density

fo () = [ (™) fu(v).

The functionv — 1 (e*™") (the polynomiak)(z) evaluated on the unit
circle) is known as thérequency responsa transfer functiorof the linear
filter.

The squared modulus,+— [1)(e?™)|? is known as th@ower transfer
functionof the filter.
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‘ Frequency response of a time-invariant linear fiIterI

For stabley, Y; = ¢(B) X, has spectral density

f,0) = [ ()| o).

We have seen that a linear procegs= (B) W4, is a special case, since
fy) = [9(e™) 2o, = [Y(e*™)[* fu (v).
When we pass a time seri¢X,; } through a linear filter, the spectral densit

IS multiplied, frequency-by-frequency, by the squared alosl of the
frequency responser |y (e?™)|2.

This is a version of the equality VarX) = a*Var(X), but the equality is
true for the component of the variance at every frequency.

This is also the origin of the name ‘filter.’
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Frequency response of a filter: Detailj

Why is fy(y) — [y (e2¥)|” f.(v)? First,

vy(h) = E Z Vi Xt Z Ve Xtth—k

j_—OO k=—o0

Z V; Z VrE [ Xt n—r Xt

J=—00 k=—o0

Z % Z wkﬂ/a: h+]_ Z % Z ¢h+] l')/a:

Jj=—00 k=—o0 J=—00 l=—o0

Itis easy to check that -~ _ || < ocoand) ;” |v.(h)| < ooimply
thatd >~ __ |y (h)] < oo. Thus, the spectral density gfis defined.
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Frequency response of a filter: Detailj

DD W Y tnga (e

h=—o0 j=—00 l=—o0

o0
27T’I,U —27T7jul —2miv(h+7—1
E % g E ’7:1: § thrj—le miv(hti=i)

Jj=—00 [=—o0 h=—o0

_w 27‘("Ll/] fm Z w 6—27T’I,Uh

h——oo

= (2™ ™)|* fo(v)

24



‘FWequencyresponse:Exanuﬂe'

For a linear process; = ¢(B)Wy, f,(v) = |¢ (™) ]2 o2
For an ARMA modely(B) = 0(B)/¢(B), so{Y;} has the rational

spectrum

2

9(6—27'("le/)
¢ (6—27ri1/)
2 q —2miv )
_ o0l e —
— Tw o —2miv |2
pr Hj:l e — Dyl
wherep; andz; are the poles and zeros of the rational function

2 0(2)/9(2).

fy(V) :O-’?U

‘ 2
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‘FWequencyresponse:Exanuﬂe'

Consider the moving average

This is a time invariant linear filter (but it is not causalp transfer function

Is the Dirichlet kernel

k
—2mv 1 —2mjv
(e ):Dk(QWV):2k+1 > e
j=—k

1 If v =0,

sin(27w(k4+1/2)v)

(2k+1) sin(7v) otherwise.
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Example: Moving average'

Transfer function of moving average (k=5)
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Example: Moving average'

Squared modulus of transfer function of moving average (k=5)
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This is alow-pass filter It preserves low frequencies and diminishes hig
frequencies. It is often used to estimate a monotonic trentbonent of a
series.
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Example: Differencing'

Consider the first difference
Y; = (1 — B)X:.

This Is a time invariant, causal, linear filter.

Its transfer function is

¢(6—27T’1;U) —1— 6—27m'1/7

so  |Y(e *™)|? = 2(1 — cos(2mv)).
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Example: Differencing'

Transfer function of first difference
T

This is ahigh-pass filter It preserves high frequencies and diminishes lo
frequencies. It is often used to eliminate a trend compookatseries.
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