Introduction to Time Series Analysis. Lecture 14.
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Recall: Maximum likelthood estimation I

The MLE (¢, 0, 62 satisfies
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Recall: Maximum likelthood estimation '

We can express the likelihood in terms of thaovations.

Since the innovations are linear in previous and currentesglwe can write
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whereC' is a lower triangular matrix with ones on the diagonal.
Take the variance/covariance of both sides to see that

I, =CDC’"  whereD = diag(Py,...,P" 1.




Recall: Maximum likelthood estimation '
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We rewrite the likelihood as
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Recall: Maximum likelthood estimation '

The log likelihood of¢, 0, o2 is
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‘Summary: Maximum likelihood estimation I

The MLE (¢, 0, 62 satisfies
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‘Building ARMA models'

. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

. Nonlinearly transform data, if necessary
. ldentify preliminary values g, andg.

. Estimate parameters.

. Use diagnostics to confirm residuals are white/iid/ndrma

. Model selectionChoosep andg.




M odel Selection I

We have used the daiato estimate parameters of several models. They
fit well (the innovations are white). We need to choose a singbdel to
retain for forecasting. How do we do it?

If we had access to independent dafaom the same process, we could
compare the likelihood on the new dafa,(¢, 6, 52).

We could obtainy by leaving out some of the data from our model-building
and reserving it for model selection. This is caltedss-validation. It

suffers from the drawback that we are not using all of the tatparameter
estimation.




M odel Selection: AIC'

We can approximate the likelihood defined using independatat
asymptotically
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AIC.: corrected Akaike information criterion.

Notice that:
e More parameters incur a bigger penalty.
e Minimizing the criterion over all values of, ¢, ¢, 0, 52, corresponds to

choosing the optimap, 6, 62 for eachp, ¢, and then comparing the
penalized likelihoods.

There are also other criteria: BIC.
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‘ Integrated ARMA Models: ARI MA(p,d,q)I

Forp,d,q > 0, we say that a time serigsX, } is an
ARIMA (p,d,q) processif V; = V4X, = (1 — B)4X, is
ARMA(p,q). We can write

6(B)(1 - B)'X, = 0(B)W,.

Recall the random walkX; = X,;_{ + W..
X Is not stationary, buy; = (1 — B)X; = W, is a stationary process.
In this case, it is white, s¢.X;} is an ARIMA(O,1,0).

Also, if X; contains a trend component plus a stationary process,gts fir
difference is stationary.
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‘ARIMA modelsexample'

Supposdg X, } isan ARIMA(0,1,1): X; = X; 1 + W, — W, _4.
If |01| < 1, we can show

Xe=) (1=00)0 Xoj + W,
j=1
andso X,41=» (1—01)07 ' Xi1-;

j=1

::u.-egx%-FEZ(y—ege?ﬂx;+Lﬁ
j=2

=(1—-6))X, + 6, X,.

Exponentially weighted moving average.
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‘Building ARIMA models'

. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

. Nonlinearly transform data, if necessary

. ldentify preliminary values o, p, andg.

. Estimate parameters.

. Use diagnostics to confirm residuals are white/iid/ndrma

. Model selection.
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‘ | dentifying preliminary values of d. Sample ACF I

Trends lead to slowly decaying sample ACF:
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| dentifying preliminary valuesof d, p, and ¢ I

For identifying preliminary values af, a time plot can also help.

Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

For identifyingp, ¢, look at sample ACF, PACF dfl — B)?X;:

Model: ACF: PACF:
AR(p) decays zero fok > p
MA(Q) zero forh > g decays

ARMA(p,q) decays decays
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\ Pure seasonal ARMA M odels'

For P,Q > 0 ands > 0, we say that a time serigsX; } is an
ARMA(P,Q); processif ®(B*)X; = O(B*)W;, where

P
O(B*)=1-) &;B

j=1

Q@
O(B*) =1+ ) ©;B%.

g=1

It is causal iff the roots of®(z*) are outside the unit circle.
It is invertibleiff the roots of©(z*) are outside the unit circle.
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\ Pure seasonal ARMA M odels'

Example:P =0, Q =1,s=12. X; = W; + O W;i_19.

7(0) = (1+ 67)as,
v(12) = ©102,
v(h) =0 forh=1,2,...,11,13,14,....

Example:P =1, =0,s =12. X; = &1 X;_15 + W,.

7(0)
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\ Pure seasonal ARMA M odels'

The ACF and PACF for a seasonal ARMA(P,@Ye zero folh # si. For
h = si, they are analogous to the patterns for ARMA(p,q):

M oddl: ACF: PACF:
AR(P), decays zero for > P

MA(Q) zero fori > @) decays
ARMA(P,Q); decays decays
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Multiplicative seasonal ARMA M odels'

Forp, ¢, P, > 0ands > 0, we say that atime seri¢s(; } is a
multiplicative seasonal ARMA model (ARMA(p,q)x(P,Q))
if &(B%)¢p(B)X; = O(B*)0(B)W,.

If, in addition,d, D > 0, we define thenultiplicative seasonal
ARIMA model (ARIMA(p,d,q)x(P,D,Q),)

®(B*)¢(B)VEVIX, = ©(B*)0(B)W,,

where theseasonal difference operator of order D is defined by

vPXx, =1 - B%PX,.
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Multiplicative seasonal ARMA M odels'

Notice that these can all be represented by polynomials

®(B*)p(B)V/V?=E(B),  O(B*)d(B)

But the difference operators imply thatB) X; = A(B)W,; does not define
a stationary ARMA process (the AR polynomial has roots oruttié
circle). And representing(B?*)¢(B) andO©(B?)0(B) as arbitrary
polynomials is not as compact.

How do we choose, q, P, ), d, D?

First difference sufficiently to get to stationarity. Themdisuitable orders
for ARMA or seasonal ARMA models for the differenced timeissr The
ACF and PACF is again a useful tool here.
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