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Review: Maximum likelihood estimator'

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,) under the
Gaussian model with those parameters:

1 1
L(¢7 670-30) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.




‘ Maximum likelihood estimation: Simplifications I

We can simplify the likelihood by expressing it in terms of thnovations.

Since the innovations are linear in previous and currentesglwe can write

(X, )

=C

)
%

whereC' is a lower triangular matrix with ones on the diagonal.
Take the variance/covariance of both sides to see that

I, =CDC’"  whereD = diag(P},...,P"1).




Maximum likelihood estimation '

Thus,|T',,| = |C|?PY--- P~ 1 =PP... P»~1 and
XT 'x=v'cr tcu=vcc*p*tc tcUu=UD"'U.

So we can rewrite the likelihood as

n

L(¢,0,02) = ! )1/2 exp (—% Z(Xi — X!71)?

((2m)nPp - - Pyt i=1
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wherer!~' = P/~! /o2 and

S<¢,9>=Z(

1=1




Maximum likelihood estimation '

The log likelihood of¢, 0, o2 is

1 < .
S log(2mo2) — 5 Zlogrg_l —

2 ;
1=1




‘Summary: Maximum likelihood estimation I

The MLE (¢, 0, 62 satisfies

wherer!~! = P/~! /o2 and

S0 =3 FXT)

i=1 i




Maximum likelihood estimation '

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:
e Unconditional least squares. Drop thelog r!~' terms.

e Conditional least squares. Also approximate the computation of ' by
dropping initial terms inS. e.g., for AR(2), all but the first two terms i$i
depend linearly o, ¢-, SO we have a least squares problem.

The differences diminish as sample size increases. Formgam

t—1 2 t—1 —1 —1
P,™" — og sor; " — 1,and thus™" ) . logr;




Review: Maximum likelihood estimation'

For an ARMA(p,q) process, the MLE and un/conditional least
sguares estimators satisfy

¢ ¢ Lo Lo

A

0 0 ’ Tos Do,
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ol ¢0 — COV((X, Y),<X7 Y))?
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¢(B)Xt — Wta

0(B)Y, = W,.
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‘ Building ARMA models I

. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

. Nonlinearly transform data, if necessary
. ldentify preliminary values g, andg.

. Estimate parameters.

. Usediagnosticgo confirm residuals are white/iid/normal.

. Model selectionChoosep andg.
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Diagnostics'

How do we check that a model fits well?

The residuals (innovations, — z!~') should be white.
Consider thestandardized innovations,

~t—1
CCt—ZEi

/ptt—1 '

This should behave like a mean-zero, unit variance, iid secge.

€t —

e Check a time plot

e Turning point test

e Difference sign test

e Rank test

e Q-Q plot, histogram, to assess normality
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Testing 1.1.d.: Turning point test I

{X:}i.i.d. implies thatX;, X;., and X, are equally likely to occur in
any of six possible orders:

(provided X;, X1, X¢1o are distinct).

Four of the six areurning points.
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Testing 1.1.d.: Turning point test I

DefineT" = |{t : X;, X¢11, Xty IS @ turning point|.

ET = (n—2)2/3.
Can showl' ~ AN (2n/3,8n/45).
Reject (at 5% level) the hypothesis that the series is ifi.d.

2n 8N
T — —| > 1.96\/ —.
‘ 3 45

Tests for positive/negative correlations at lag 1.
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Testing 1.1.d.: Difference-sign tes]

n—1

ES =
o 2

Can showS ~ AN (n/2,n/12).

Reject (at 5% level) the hypothesis that the series is ifi.d.
n n
— = 1. —.
55| > 196/ 35

(But a periodic sequence can pass this test...)

Tests for trend.
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‘Testing 1.1.d.: Ranktest'

N = |{(i,j) : X; > X, andi > j}|.

n(n—l).
4

EN =

Can showN ~ AN (n?/4,n/36).

Reject (at 5% level) the hypothesis that the series is ifi.d.

n? ns
N — — 1.964/ —.
| 2|7V 36

Tests for linear trend.
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Testing if an i.I.d. sequence is Gaussian: qq plj

Plot the pairs(ml, X(l)), Cee (mn, X(n)),

wherem; = EZ;,

Zy < --- < Zy are order statistics fronv (0, 1) sample of size:, and
Xy < -+ < Xy, are order statistics of the serids, ..., X,,.

ldea: If X; ~ N(u,o0?), then
EX() =n+omy,
so(mj, X(;)) should bdinear.

There are tests based on how far correlatio(rof, X ;) is from 1.
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