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Review: Maximum likelihood estimator

Suppose thatX1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parametersφ ∈ R
p, θ ∈ R

q,

σ2
w ∈ R+ is defined as the density ofX = (X1, X2, . . . , Xn)

′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where|A| denotes the determinant of a matrixA, andΓn is the

variance/covariance matrix ofX with the given parameter values.

The maximum likelihood estimator (MLE) ofφ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation: Simplifications

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write







X1

...

Xn








︸ ︷︷ ︸

X

= C








X1 −X0
1

...

Xn −Xn−1
n








︸ ︷︷ ︸

U

whereC is a lower triangular matrix with ones on the diagonal.

Take the variance/covariance of both sides to see that

Γn = CDC ′ whereD = diag(P 0
1 , . . . , P

n−1
n ).
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Maximum likelihood estimation

Thus,|Γn| = |C|2P 0
1 · · ·Pn−1

n = P 0
1 · · ·Pn−1

n and

X ′Γ−1
n X = U ′C ′Γ−1

n CU = U ′C ′C−TD−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(
(2π)nP 0

1 · · ·Pn−1
n

)1/2
exp

(

−
1

2

n∑

i=1

(Xi −Xi−1
i )2/P i−1

i

)

=
1

(
(2πσ2

w)
nr01 · · · r

n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

whereri−1
i = P i−1

i /σ2
w and

S(φ, θ) =
n∑

i=1

(
Xi −Xi−1

i

)2

ri−1
i

.
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Maximum likelihood estimation

The log likelihood ofφ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w)−
1

2

n∑

i=1

log ri−1
i −

S(φ, θ)

2σ2
w

.

Differentiating with respect toσ2
w shows that the MLE(φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1
i .
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Summary: Maximum likelihood estimation

The MLE (φ̂, θ̂, σ̂2
w) satisfies

σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1
i ,

whereri−1
i = P i−1

i /σ2
w and

S(φ, θ) =

n∑

i=1

(
Xi −Xi−1

i

)2

ri−1
i

.
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:

• Unconditional least squares. Drop thelog ri−1
i terms.

• Conditional least squares. Also approximate the computation ofxi−1
i by

dropping initial terms inS. e.g., for AR(2), all but the first two terms inS

depend linearly onφ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,

P t−1
t → σ2

w sort−1
t → 1, and thusn−1

∑

i log r
i−1
i → 0.
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Review: Maximum likelihood estimation

For an ARMA(p,q) process, the MLE and un/conditional least

squares estimators satisfy




φ̂

θ̂



−




φ

θ



 ∼ AN




0,

σ2
w

n




Γφφ Γφθ

Γθφ Γθθ,





−1



 ,

where




Γφφ Γφθ

Γθφ Γθθ,



 = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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Building ARMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Nonlinearly transform data, if necessary

3. Identify preliminary values ofp, andq.

4. Estimate parameters.

5. Usediagnosticsto confirm residuals are white/iid/normal.

6. Model selection: Choosep andq.
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Diagnostics

How do we check that a model fits well?

The residuals (innovations,xt − xt−1
t ) should be white.

Consider thestandardized innovations,

et =
xt − x̂t−1

t
√

P̂ t−1
t

.

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality
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Testing i.i.d.: Turning point test

{Xt} i.i.d. implies thatXt, Xt+1 andXt+2 are equally likely to occur in

any of six possible orders:

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

(providedXt, Xt+1, Xt+2 are distinct).

Four of the six areturning points .
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Testing i.i.d.: Turning point test

DefineT = |{t : Xt, Xt+1, Xt+2 is a turning point}|.

ET = (n− 2)2/3.

Can showT ∼ AN(2n/3, 8n/45).

Reject (at 5% level) the hypothesis that the series is i.i.d.if
∣
∣
∣
∣
T −

2n

3

∣
∣
∣
∣
> 1.96

√

8n

45
.

Tests for positive/negative correlations at lag 1.
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Testing i.i.d.: Difference-sign test

S = |{i : Xi > Xi−1}| = |{i : (∇X)i > 0}|.

ES =
n− 1

2
.

Can showS ∼ AN(n/2, n/12).

Reject (at 5% level) the hypothesis that the series is i.i.d.if

∣
∣
∣S −

n

2

∣
∣
∣ > 1.96

√
n

12
.

Tests for trend.

(But a periodic sequence can pass this test...)
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Testing i.i.d.: Rank test

N = |{(i, j) : Xi > Xj andi > j}|.

EN =
n(n− 1)

4
.

Can showN ∼ AN(n2/4, n3/36).

Reject (at 5% level) the hypothesis that the series is i.i.d.if

∣
∣
∣
∣
N −

n2

4

∣
∣
∣
∣
> 1.96

√

n3

36
.

Tests for linear trend.
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Testing if an i.i.d. sequence is Gaussian: qq plot

Plot the pairs(m1, X(1)), . . . , (mn, X(n)),

wheremj = EZ(j),

Z(1) < · · · < Z(n) are order statistics fromN(0, 1) sample of sizen, and

X(1) < · · · < X(n) are order statistics of the seriesX1, . . . , Xn.

Idea: If Xi ∼ N(µ, σ2), then

EX(j) = µ+ σmj ,

so(mj , X(j)) should belinear.

There are tests based on how far correlation of(mj , X(j)) is from1.
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