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Review: Yule-Walker estimation'

Method of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we choosgso thaty(h) ey P

Yule-Walker equations fos:

These are the forecasting equations.
We can use the Durbin-Levinson algorithm.




Review: Confidence intervals for Yule-Walker estimation.

If {X;}isan AR(p) process,

~ 0'2
¢ ~ AN (¢7 _F;1> ’
n

~ 1
Gnn ~ AN (0, —) for h > p.
n

Thus, we can use the sample PACF to test for AR order, and we can
calculate approximate confidence intervals for the pararset




Review: Confidence intervals for Yule-Walker estimation'

If {X;}isan AR(p) process, andis large,

o \/n(¢, — ¢,) is approximatelyN (0, 521" 1),
e With probability~ 1 — «, ¢,; is in the interval

A & N\ 12
ns £ ®rapr (01)

33

where®,_,, /- is thel — «/2 quantile of the standard normal.




Review: Confidence intervals for Yule-Walker estimation.

e With probability~ 1 — «, ¢, Is in the ellipsoid

{gb cRY: (Qgp - §b>/fp (qu - €b> < %QX%—a(p)}a

wherexi_, (p) is the(1 — «) quantile of the chi-squared withdegrees of freedom.




Yule Walker estimation: Example'

Sample ACF: Depth of Lake Huron, 1875 — 1972
T T T T




Yule Walker estimation: Example'

Sample PACF: Depth of Lake Huron, 1875 — 1972
T T T T T
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Yule Walker estimation: Example'

1.7379 1.4458
1.4458 1.7379

1.0538
—0.2668

A

=T 14, =

= 4(0) — ¢hAe = 0.4971




Yule Walker estimation: Example'

Confidence intervals:

= 1.0538 = 0.1908

= —0.2668 = 0.1908
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Yule-Walker estimation I

It is also possible to define analogous estimators for ARMd#)(models
with ¢ > 0:

FG) = 9G —1) — - — A — p —02297,% >

wherey(B) = 0(B)/¢(B).

Because of the dependence on{hethese equations are nonlineaksin ;.
There might be no solution, or nonunique solutions.

Also, theasymptotic efficiencgf this estimator is poor: it has unnecessaril

high variance.
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Efficiency of estimators'

Let (V) and¢(® be two estimators. Suppose that

oM ~ AN(¢,0%), ¢ ~ AN(¢,03).

The asymptotic efficiency ab(1) relative tog?) is

1) 22)) _ 92
€ (¢7¢ 7§b ) — ?

1
If e (gb, o), q3<2)) < 1 for all ¢, we say that)? is amore efficient
estimator ofp thano(®).

For example, for an AR(p) process, the moment estimatorlaad t
maximum likelihood estimator are as efficient as each other.

For an MA(Q) process, the moment estimator is less efficleant the
Innovations estimator, which is less efficient than the MLE.
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Yule Walker estimation: Example'

0_2

’7(0> — 1—gb%

N o2 42
¢1 ~ AN (¢1, ;Ffl) = AN (¢17 ! ngbl) :

P2 n

1 — ¢3 —¢1(1 + ¢2) )
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Yule Walker estimation: Example'

Suppos€ X, } is an AR(1) process and the sample sizs large.

If we estimatep, we have
. 1 — @2
Var(¢;) ~ n(bl.

If we fit a larger model, say an AR(2), to this AR(1) process,

A 1—¢2 1 1 — ¢?
Var(¢1)% ng:— > ¢1
n n n

We have lost efficiency.
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Parameter estimation: Maximum likelihood estimator'

One approach:

Assume thaf X, } is Gaussian, that igy(B) X; = 6(B)W;, whereW, is
1.i.d. Gaussian.
Choosep;, 0; to maximize thdikelihood

L(g,0,0%) = f(X1,...,X,),

wheref is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probwglufithe data.)

16



Maximum likelihood estimation '

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,) under the
Gaussian model with those parameters:

1 1
L(¢7 670-30) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.
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Parameter estimation: Maximum likelihood estimator'

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.

Even if { X;} is not Gaussian, the asymptotic distribution of the estmat
(¢,0,52) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estisfdr this).
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Preliminary parameter estimates'

Yule-Walker for AR(p) : RegressX; ontoX;_1,...,X: .
Durbin-Levinson algorithm withy replaced byy.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(qQ): with v replaced by.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noige.
3. Regress\, onto X, _1, ..., X¢_p, Wi_1,..., Wi_,.
4. Regress again with improved estimate$1t
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Recall: Maximum likelihood estimation I

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,) under the
Gaussian model with those parameters:

1 1
L(¢7 670-30) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.
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Maximum likelihood estimation '

We can simplify the likelihood by expressing it in terms of thnovations

Since the innovations are linear in previous and currentesglwe can write

(Xl\ [ Xl—.Xi) )

=C

v ) Ny

A\ . \

U

whereC' is a lower triangular matrix with ones on the diagonal.
Take the variance/covariance of both sides to see that

I, =CDC’"  whereD = diag(Py,...,P" 1.
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Maximum likelihood estimation '

Thus,|T',,| = |C|?PY--- P~ 1 =PP... P»~1 and
XT 'x=v'cr tcu=vcc*p*tc tcUu=UD"'U.

So we can rewrite the likelihood as

n

L(¢,0,02) = ! )1/2 exp (—% Z(Xi — X!71)?

((2m)nPp - - Pyt i=1

1 . p( S( 9))
f— X _ ,
((2m02)msy o) 2 2

1...""n

wherer!~' = P/~! /o2 and

S<¢,9>=Z(

1=1

22



Maximum likelihood estimation '

The log likelihood of¢, 0, o2 is

1 < .
S log(2mo2) — 5 Zlogrg_l —

2 ;
1=1
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‘Summary: Maximum likelihood estimation I

The MLE (¢, 0, 62 satisfies

wherer!~! = P/~! /o2 and

S0 =3 FXT)

i=1 i
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Maximum likelihood estimation '

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:
e Unconditional least square®rop thelog r!~' terms.

e Conditional least square®Also approximate the computation @j“l by
dropping initial terms inS. e.g., for AR(2), all but the first two terms i$i
depend linearly o, ¢-, SO we have a least squares problem.

The differences diminish as sample size increases. Formgam

t—1 2 t—1 —1 —1
P,™" — og sor; " — 1,and thus™" ) . logr;
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Maximum likelihood estimation: Confidence intervals.

For an ARMA(p,q) process, the MLE and un/conditional least
sguares estimators satisfy

Tyo T
? ¢ ~ AN |0, e [ TO0 90
n

/\

Loy Loe,

Lo Lo

) — Cov((X,Y), (X,Y)),

I'gy  1go,
X =(X1,....X,)  ¢(B)X, =W,
— (Yi,...,Y,)  0(B)Y:=W,
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