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Review (Lecture 1): Time series modelling and forecastin'

1. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

2. Transform data so that residuals atationary.
(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log/-).

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and ingeainy
transformations.




‘ Review: Time series modelling and forecastin'

Stationary time series models: ARMA(p,q).
e p = 0: MA(Q),
e ¢ = 0: AR(p).

We have seen that any causal, invertible linear process has:
an MA(co) representation (from causality), and
an AR(co) representation (from invertibility).

Real data cannot bexactly modelled using a finite number of parameters.

We choose, ¢ to give a simple but accurate model.




‘ Review: Time series modelling and forecastin'

How do we use data to decide png?
1. Use sample ACF/PACF to make preliminary choices of moo##io
2. Estimate parameters for each of these choices.

3. Compare predictive accuracy/complexity of each (usang, AlC).

NB: We need to compute parameter estimates for severatefitfenodel

orders.
Thus, recursive algorithms for parameter estimation apomant.
We’'ll see that some of these are identical to the recursiyerghms for

forecasting.




‘ Review: Time series modelling and forecastin'

Model: ACF: PACF:
AR(p) decays zero fok > p
MA(Q) zero forh > ¢q decays

ARMA(p,q) decays decays
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\ Parameter estimation'

We want to estimate the parameters of an ARMA(p,q) model.
We will assume (for now) that:

1. The model order (p and q) is known, and

2. The data has zero mean.

If (2) is not a reasonable assumption, we can subtract thplsameany,
fit a zero-mean ARMA model,

¢(B)X: = 0(B)W,

to the mean-corrected time seri&s = Y; — v,
and then us&; + 4 as the model fok;.




Parameter estimation: Maximum likelihood estimator'

One approach:

Assume thaf X, } is Gaussian, that igy(B) X; = 6(B)W;, whereW, is
1.i.d. Gaussian.
Choosep;, 8, to maximize theikelihood:

L(¢7 9702) — f¢,9,02 (X17 IR 7Xn)7

wheref, ¢ »2 IS the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probwglwfithe data.)




Maximum likelihood estimation '

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,) under the
Gaussian model with those parameters:

1 1
L(¢7 670-30) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.




Parameter estimation: Maximum likelihood estimator'

Advantages of MLE:

Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.

Even if { X;} is not Gaussian, the asymptotic distribution of the estmat
(¢,0,52) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.
Need to choose a good starting point (often use other estisfdr this).
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Preliminary parameter estimates'

Yule-Walker for AR(p) : RegressX; ontoX;_1,...,X: .
Durbin-Levinson algorithm withy replaced byy.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(qQ): with v replaced by.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.
2. Use to estimate (unobserved) noige.
3. Regress\, onto X, _1, ..., X¢_p, Wi_1,..., Wi_,.
4. Regress again with improved estimate$1t
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Yule-Walker estimation I

For a causal AR(p) model(B) X; = W;, we have
= E(Xt_z'Wt) fori = O, .4 P

7(0) — ¢'yp =0 and
pr T Fpgb — 07

where¢ = (¢1,...,¢,)’, and we've used the causal representation

Xe =Wy + Z¢th—j
j=1

to calculate the values(&;_;1W;).
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Yule-Walker estimation '

Method of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we chooseso thaty = 4.

Yule-Walker equations fog:

These are the forecasting equations.
We can use the Durbin-Levinson algorithm.
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Some facts about Yule-Walker estimatioEI

e If 4(0) > 0, thenI',, is nonsingular.
e In that casep = f]jl&p defines the causal model

Xy — 1 Xy — - — 9 Xo_p =Wy, {Wi} ~WN(0,62).

o If {X;}isan AR(p) process,

2
b~ AN (¢, U—r;1> | 52 5 2.
n

A 1
Pnn ~ AN (0, —) for h > p.
n

Thus, we can use the sample PACF to test for AR order, and we can
calculate approximate confidence intervals for the paramet
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\ Yule-Walker estimation: Confidence intervals'

If {X;}isan AR(p) process, andis large,

o \/n(¢, — ¢p) is approximatelyN (0, 521" 1),

e With probability~ 1 — «, ¢,; is in the interval
. & S\ 1/2
ns £ ®rapp (01)

33

where®,_,, /, is thel — a//2 quantile of the standard normal.
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\ Yule-Walker estimation: Confidence intervals'

e With probability~ 1 — «, ¢, Is in the ellipsoid
. I o /oA &2
{¢ ER: (b~ 0) Ty (dp— 0) < ;x%_a(m} ,

wherex?__ (p) is the(1 — a) quantile of the chi-squared withdegrees of
freedom.

To see this, notice that

2
Sw

Var (leo/2<§gp - ¢p)) = F;/Q Var(qu - pr)rglo/Q -, L.

Thus, v=T12(¢, — ¢,) ~ N(0,62 /nI)
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