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1. (a) We compute three cases: since theWt are uncorrelated, we can ignore
any cross-terms of the form EWsWt when s 6= t. Then
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4
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2
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2
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4
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4
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2
EW 2

t = −3

2
.

For h ≥ 3, γ(h) = 0.

(b) Similarly to the previous part,

γ(0) = EW̃ 2
t +

1

36
EW̃ 2

t−1 +
1

36
EW̃ 2

t−2 =
19

2
.

γ(1) = −1

6
EW̃ 2

t +
1

36
EW̃ 2

t−1 = −5

4

γ(2) = −1

6
EW̃ 2

t = −3

2
.

For h ≥ 3, γ(h) = 0. This is exactly the same covariance function as
in part 1(a).

(c) Let θa(z) = 1 + 5
2z − 3

2z
2 and θb(z) = 1− 1

6z − 1
6z

2 be the MA poly-
nomials of parts (a) and (b) respectively. By the quadratic formula,
the roots of θa are 2 and −1/3; similarly, the roots of θb are −3 and
2. By Proposition P3.2 in the text, the MA model of part (a) is not
invertible, but the MA model of part (b) is invertible.

2. (a) The AR polynomial is φ(z) = 1+0.81z2, which has roots z = ±10i/9.
The MA polynomial is θ(z) = 1+ z/3, which has root z = −3. Thus,
this is an ARMA(2, 1) process which is causal and invertible.

(b) The AR polynomial is φ(z) = 1 − z, which has root 1. The MA
polynomial is θ(z) = 1 − z/2 − z2/2, which has roots −2 and 1.
Since these polynomials share a common root, they have the common
factor 1− z. Factoring these out, the irredundant representation has
AR polynomial φ(z) = 1 (which has no roots) and MA polynomial
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θ(z) = 1 + z/2 (which has root −2). Thus, this is an ARMA(0, 1)
process (or, in other words, an MA(1) process) which is causal and
invertible.

(c) The AR polynomial is φ(z) = 1 − 3z, which has root 1/3. The
MA polynomial is θ(z) = 1 + 2z − 8z2, which has roots −1/4 and
1/2. Thus, this is an ARMA(1, 2) process which is neither causal nor
invertible.

(d) The AR polynomial is φ(z) = 1−2z+2z2, which has roots 1/2± i/2.
The MA polynomial is θ(z) = 1 − 8z/9, which has root 9/8. Thus,
this is an ARMA(2, 1) process which is invertible but not causal.

(e) The AR polynomial is φ(z) = 1 − 4z2, which has roots ±1/2. The
MA polynomial is θ(z) = 1 − z + z2/2, which has roots 1 ± i. Thus,
this is an ARMA(2, 2) process which is invertible, but not causal.

(f) The AR polynomial is φ(z) = 1− 9z/4− 9z2/4, which has roots 1/3
and −4/3. The MA polynomial is θ(z) = 1, which has no roots.
Thus, this is an ARMA(2, 0) process (an AR(2) process) which is
invertible, but not causal.

(g) The AR polynomial is φ(z) = 1 − 9z/2 − 9z2/4, which has roots
1/3 and −4/3. The MA polynomial is θ(z) = 1 − 3z + z2/9 − z3/3,
which has roots 1/3 and ±3i. As in part (b), we can factorize out
the common factor of 1 − 3z, to obtain the irredundant form φ(z) =
1 + 3z/4 and θ(z) = 1 + z2/9. Thus, this is an ARMA(1, 2) process
which is causal and invertible.

3. Parts (a), (b) and (g) from question 2 are causal:

(a) The power series ψ is given by the expansion of

θ(z)

φ(z)
=

1 + z/3

1 + 81z2/100

= (1 + z/3)(1 − 81

100
z2 +

812

1002
z4 − . . . )

= 1 + z/3 − 81

100
z2 − 27

100
z3 +

6561

10000
z4 + . . .

(b) The power series ψ is given by the expansion of

θ(z)

φ(z)
=

1 − z/2 − z2/2

1

= 1 − 1

2
z − 1

2
z2 + 0z3 + 0z4.
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(g) The power series ψ is given by the expansion of

θ(z)

φ(z)
=

1 + z2/9

1 + 3z/4

= (1 + z2/9)(1 − 3z/4 + 9z2/16 − 27z3/64 + 81z4/256 + . . . )

= 1 − 3

4
z +

(
1

9
+

9

16

)
z2 −

(
1

12
+

27

64

)
z3 +

97

256
z4 + . . .

4. The simulation code for all three parts is as follows:

simAndPlot <- function(ar, ma, file) {

p <- list()

p[["ar"]] <- ar

p[["ma"]] <- ma

x <- arima.sim(p, 100)

true_acf <- ARMAacf(ar=ar, ma=ma, 20)

postscript(file=file)

par(mfcol=c(3,1))

plot(x)

a <- acf(x, ylab="Sample ACF")

a$acf <- array(true_acf, dim=c(21, 1, 1))

plot(a)

dev.off()

}

simAndPlot(c(0, -0.81), 1/3, "stat_153_solutions2_4a.eps")

simAndPlot(0, c(-1/2, -1/2), "stat_153_solutions2_4b.eps")

simAndPlot(-3/4, c(0, 1/9), "stat_153_solutions2_4g.eps")

(a) The recurrence relation for the autocorrelation function is

γ(h) +
81

100
γ(h− 2) = 0 (1)

for h ≥ 2. There are two ways to solve this. The easier way is to
notice that this decomposes into two first-order recurrence relations:
one for γ(0), γ(2), γ(4), . . . and one for γ(1), γ(3), γ(5), . . . . However,
let’s follow the general procedure for solving recurrence relations:
the characteristic polynomial is r2 + 81

100 = 0 and its roots are 9i/10

and −9i/10 (in the notation of the lecture slides, z−1
1 = 9i/10 and

z−1
2 = −9i/10). Therefore, the general solution has the form

γ(h) = C((9i/10)t + (−9i/10)t)

= r

(
9

10

)t (
e−iωt + eiωt

)

= 2r

(
9

10

)t

cos(ωt− θ)
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where ω is the argument of 9i/10 (which is π/2), r = |C| and θ is
the argument of C.

The initial conditions for the recurrence relation are

γ(0) +
81

100
γ(2) =

10

9

γ(1) +
81

100
γ(1) =

1

3
.

We can solve the first of these simultaneously with (1) (for h = 2)
to obtain γ(0) = 100000

30951 ; we can solve the second directly to obtain
γ(1) = 100

543 .

Now we need to use these to find r and θ in the general solution. We
have

100

543
= γ(1) =

9r

5
cos(πt/2 − θ) =

9r

5
sin θ

100000

30951
= γ(0) = 2r cos(−θ) = 2r cos θ.

Thus, r = 500/(4887 sinθ), which we plug into the second equation
to obtain

1000 cosθ

4887 sinθ
=

100000

30951

and so θ = tan−1 19
300 ≈ 0.632 and sin θ = 19/

√
90361. Solving for r,

we get r = 500
√

90361/92853. This gives us the general solution

γ(h) =
100

√
90361

92853
·
(

9

10

)t

cos(πt/2 − tan−1(19/300)).

Fortunately, this can be simplified: we use the formula cos(θ + φ) =
cos θ cosφ− sin θ sinφ to see that

cos(πt/2 − θ) =

{
(−1)t/2 cos θ if t is even

(−1)(t−1)/2 sin θ if t is odd.

We can substitute this back in to obtain the general solution

γ(2h) =
100000

30951

(
9

10

)2h

γ(2h+ 1) =
100

543

(
9

10

)2h

.

Dividing everything by γ(0) gives us

ρ(2h) =

(
9

10

)2h

ρ(2h+ 1) =
57

1000

(
9

10

)2h

.

The plot is in Figure 1.
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Figure 1: The simulated series, empirical autocorrelation function and true
autocorrelation function for the model of question 2(a).
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Figure 2: The simulated series, empirical autocorrelation function and true
autocorrelation function for the model of question 2(b).
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Figure 3: The simulated series, empirical autocorrelation function and true
autocorrelation function for the model of question 2(g).
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(b) Part (b), when written with irredundant parameters, is just an MA
model, so we can compute the autocovariance function without solv-
ing any recurrence relations. The autocovariance function is γ(0) =
5/4, γ(1) = 1/2 and γ = 0 otherwise. Thus, the autocorrelation
function is ρ(0) = 1, ρ(1) = 2/5 and ρ = 0 otherwise.

The plot is in Figure 2.

(g) The recurrence relation for the autocorrelation function is

γ(h) +
3/4

γ
(h− 1) = 0.

The characteristic polynomial for this relation is r + 3/4 = 0, which
has a single root at −3/4. Therefore, the general solution to the
recurrence relation is γ(h) = A(−3/4)h. The initial conditions are

γ(0) +
3

4
γ(1) =

1393

1296

γ(1) +
3

4
γ(0) = − 1

12

γ(2) +
3

4
γ(1) =

1

9
,

which we can solve to obtain γ(0) = 1474
567 , γ(1) = − 1537

756 and γ(2) =
1649
1008 . Thus,

ρ(0) = 1

ρ(1) = −4611

5896

ρ(2) =
14841

23584

ρ(h) =
14841

23584
·
(
−3

4

)h−2

,

where the last equation holds for h > 2.

The plot is in Figure 3.

8


