Stat153 Assignment 2 (due September 24, 2010)

1. (ACF of MA)

- (a) Find the autocovariance function of the time series $X_t = W_t + \frac{5}{2}W_{t-1} \frac{3}{2}W_{t-2}$, where $\{W_t\} \sim WN(0,1)$.
- (b) Find the autocovariance function of the time series $X_t = \tilde{W}_t \frac{1}{6}\tilde{W}_{t-1} \frac{1}{6}\tilde{W}_{t-2}$, where $\{\tilde{W}_t\} \sim WN(0,9)$. Compare with 1a.
- (c) Which of the MA models in 1a and 1b is invertible?

2. (ARMA models)

For each of the following ARMA models, find the roots of the AR and MA polynomials, identify the values of p and q for which they are ARMA(p,q) (be careful of parameter redundancy), determine whether they are causal, and determine whether they are invertible. In each case, $\{W_t\} \sim WN(0,1)$.

- (a) $X_t + 0.81X_{t-2} = W_t + \frac{1}{3}W_{t-1}$.
- (b) $X_t X_{t-1} = W_t \frac{1}{2}W_{t-1} \frac{1}{2}W_{t-2}$.
- (c) $X_t 3X_{t-1} = W_t + 2W_{t-1} 8W_{t-2}$.
- (d) $X_t 2X_{t-1} + 2X_{t-2} = W_t \frac{8}{9}W_{t-1}$.
- (e) $X_t 4X_{t-2} = W_t W_{t-1} + \frac{1}{2}W_{t-2}$.
- (f) $X_t \frac{9}{4}X_{t-1} \frac{9}{4}X_{t-2} = W_t$.
- (g) $X_t \frac{9}{4}X_{t-1} \frac{9}{4}X_{t-2} = W_t 3W_{t-1} + \frac{1}{9}W_{t-2} \frac{1}{3}W_{t-3}$. (Hint: This model is causal.)

3. (linear process representation of ARMA)

For those models of Question 2 that are causal, compute the first five coefficients $\psi_0, \psi_1, \dots, \psi_4$ in the causal linear process representation $X_t = \sum_{j=0}^{\infty} \psi_j W_{t-j}$.

4. (ACF of ARMA)

For those models of Question 2 that are causal,

- (a) Compute the ACF.
- (b) Simulate 100 observations from each model. Compute and plot the sample ACF.