Stat153 Assignment 1 (due September 10, 2010)

1. (White noise)

We have seen that i.i.d. noise is white noise. 'This example shows that white noise is not necessarily i.i.d.

Suppose that $\{W_t\}$ and $\{Z_t\}$ are independent and identically distributed (i.i.d.) sequences, with $P(W_t = 0) = P(W_t = 1) = 1/2$ and $P(Z_t = -1) = P(Z_t = 1) = 1/2$. Define the time series model

$$X_t = W_t (1 - W_{t-1}) Z_t.$$

Show that $\{X_t\}$ is white but not i.i.d.

2. (Stationarity)

For each of the following, state if it is a stationary process. If so, give the mean and autocovariance functions. Here, $\{W_t\}$ is i.i.d. N(0,1).

- (a) $X_t = W_t W_{t-3}$.
- (b) $X_t = W_3$.
- (c) $X_t = t + W_3$.
- (d) $X_t = W_t^2$.
- (e) $X_t = W_t W_{t-2}$.
- 3. (MA process and ACF) Shumway and Stoffer problem 1.7.
- 4. (ACF and forecasting) Shumway and Stoffer problem 1.10a,b.
 (Notice that the autocorrelation function is denoted by ρ, not γ.)
- 5. (Computer exercise: AR processes) Shumway and Stoffer problem 1.3.
- 6. (Computer exercise: Sample ACFs) Generate n = 100 observations of the time series from Shumway and Stoffer problem 1.7:

$$X_t = W_{t-1} + 2W_t + W_{t+1},$$

where $\{W_t\} \sim WN(0, 1)$.

Compute and plot the sample autocorrelation function.