
Introduction to Time Series Analysis. Lecture 25.

1. Lagged regression models.

2. Review: lagged regression in the time domain

3. Cross spectrum. Coherence.

4. Lagged regression in the frequency domain.
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Lagged regression models

Consider a lagged regression model of the form

Yt =
∞
∑

h=−∞

βhXt−h + Vt,

where Xt is an observed input time series, Yt is the observed output time

series, and Vt is a stationary noise process.

This is useful for

• Identifying the (best linear) relationship between two time series.

• Forecasting one time series from the other.
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Lagged regression models: Agenda

• Review of multiple, jointly stationary time series in the time domain:
cross-covariance function, sample CCF.

• Lagged regression in the time domain: model the input series, extract
the white time series driving it (‘prewhitening’), regress with
transformed output series.

• Review of jointly stationary time series in the time domain: cross
spectrum, coherence.

• Lagged regression in the frequency domain: Calculate the input’s
spectral density, and the cross-spectral density between input and
output, and find the transfer function relating them, in the frequency
domain. Then the regression coefficients are the inverse Fourier
transform of the transfer function.
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Review: Cross-covariance

The cross-covariance function of two jointly stationary processes {Xt} and
{Yt} is

γxy(h) = E [(Xt+h − µx)(Yt − µy)] .

Their cross-correlation function is

ρxy(h) =
γxy(h)

√

γx(0)γy(0)
.

So ρxy(h) = ρyx(−h).

Example: For Yt = βXt−` + Wt for stationary {Xt}, white uncorr. {Wt},

γxy(h) = β2γx(h + `).

If ` > 0, we say Xt leads Yt.
If ` < 0, we say Xt lags Yt.
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Review: lagged regression in the time domain

Suppose we wish to fit a lagged regression model of the form

Yt = α(B)Xt + ηt =
∞
∑

j=0

αjXt−j + ηt,

where Xt is an observed input time series, Yt is the observed output time

series, and ηt is a stationary noise process, uncorrelated with Xt.

1. Fit θx(B), φx(B) to model the input series {Xt}.

2. Prewhiten the input series by applying the inverse operator

φx(B)/θx(B):

Ỹt =
φx(B)

θx(B)
Yt = α(B)Wt +

φx(B)

θx(B)
ηt.
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Review: Lagged regression in the time domain

3. Calculate the cross-correlation of Ỹt with Wt,

γỹ,w(h) = E





∞
∑

j=0

αjWt+h−jWt



 = σ2
wαh,

to give an indication of the behavior of α(B) (for instance, the delay).

4. Estimate the coefficients of α(B) and hence fit an ARMA model for

the noise series ηt.
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Coherence

To analyze lagged regression in the frequency domain, we’ll need the notion

of coherence, the analog of cross-correlation in the frequency domain.

Define the cross-spectrum as the Fourier transform of the cross-correlation,

fxy(ν) =
∞
∑

h=−∞

γxy(h)e−2πiνh,

γxy(h) =

∫ 1/2

−1/2

fxy(ν)e2πiνhdν,

(provided that
∑

∞

h=−∞
|γxy(h)| < ∞).

Notice that fxy(ν) can be complex-valued.

Also, γyx(h) = γxy(−h) implies fyx(ν) = fxy(ν)∗.
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Coherence

The squared coherence function is

ρ2
y,x(ν) =

|fyx(ν)|2

fx(ν)fy(ν)
.

Compare this with the correlation ρy,x = Cov(Y, X)/
√

σ2
xσ2

y . We can

think of the squared coherence at a frequency ν as the contribution to

squared correlation at that frequency.

(Recall the interpretation of spectral density at a frequency ν as the

contribution to variance at that frequency.)
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Estimating squared coherence

Recall that we estimated the spectral density using the smoothed squared
modulus of the DFT of the series,

f̂x(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

|X(νk − l/n)|
2

=
1

L

(L−1)/2
∑

l=−(L−1)/2

X(νk − l/n)X(νk − l/n)∗.

We can estimate the cross spectral density using the same sample estimate,

f̂xy(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

X(νk − l/n)Y (νk − l/n)∗.

9



Coherence

Also, we can estimate the squared coherence using these estimates,

ρ̂2
y,x(ν) =

|f̂yx(ν)|2

f̂x(ν)f̂y(ν)
.

(Knowledge of the asymptotic distribution of ρ̂
2

y,x(ν) under the hypothesis of no

coherence, ρy,x(ν) = 0, allows us to test for coherence.)
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Lagged regression models in the frequency domain

Consider a lagged regression model of the form

Yt =
∞
∑

j=−∞

βjXt−j + Vt,

where Xt is an observed input time series, Yt is the observed output time

series, and Vt is a stationary noise process.

We’d like to estimate the coefficients βj that determine the relationship

between the lagged values of the input series Xt and the output series Yt.
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Lagged regression models in the frequency domain

The projection theorem tells us that the coefficients that minimize the mean

squared error,

E









Yt −

∞
∑

j=−∞

βjXt−j





2






satisfy the orthogonality conditions

E







Yt −
∞
∑

j=−∞

βjXt−j



Xt−k



 = 0, k = 0,±1,±2, . . .

∞
∑

j=−∞

βjγx(k − j) = γyx(k), k = 0,±1,±2, . . .
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Lagged regression models in the frequency domain

We could solve these equations for the βj using the sample autocovariance

and sample cross-covariance. But it is more convenient to use estimates of

the spectra and cross-spectrum.

We replace the autocovariance and cross-covariance with the inverse

Fourier transforms of the spectral density and cross-spectral density in the

orthogonality conditions,

∞
∑

j=−∞

βjγx(k − j) = γyx(k), k = 0,±1,±2, . . .
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Lagged regression models in the frequency domain

This gives, for k = 0,±1,±2, . . .,

∫ 1/2

−1/2

∞
∑

j=−∞

βje
2πiν(k−j)fx(ν)dν =

∫ 1/2

−1/2

e2πiνkfyx(ν),

∫ 1/2

−1/2

e2πiνkB(ν)fx(ν)dν =

∫ 1/2

−1/2

e2πiνkfyx(ν),

where B(ν) =
∑

∞

j=−∞
e−2πiνjβj is the Fourier transform of the

coefficient sequence βj .

Since the Fourier transform is unique, the orthogonality conditions are

equivalent to

B(ν)fx(ν) = fyx(ν).
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Lagged regression models in the frequency domain

We can write the mean squared error at the solution as

E







Yt −
∞
∑

j=−∞

βjXt−j



 Yt



 = γy(0) −
∞
∑

j=−∞

βjγxy(−j)

=

∫ 1/2

−1/2

(fy(ν) − B(ν)fxy(ν)) dν

=

∫ 1/2

−1/2

fy(ν)

(

1 −
fyx(ν)fxy(ν)

fx(ν)fy(ν)

)

dν

=

∫ 1/2

−1/2

fy(ν)

(

1 −
|fyx(ν)|2

fx(ν)fy(ν)

)

dν

=

∫ 1/2

−1/2

fy(ν)
(

1 − ρ2
yx(ν)

)

dν.
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Lagged regression models in the frequency domain

MSE =

∫ 1/2

−1/2

fy(ν)
(

1 − ρ2
yx(ν)

)

dν.

Thus, ρyx(ν)2 indicates how the component of the variance of {Yt} at a

frequency ν is accounted for by {Xt}. Compare this with the corresponding

decomposition for random variables:

E(y − βx)2 = σ2
y(1 − ρ2

xy).
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Lagged regression models in the frequency domain

We can estimate the βj in the frequency domain:

B̂(νk) =
f̂yx(νk)

f̂x(νk)
.

We can approximate the inverse Fourier transform of B̂(ν),

β̂j =

∫ 1/2

−1/2

e2πiνjB̂(ν)dν

via the sum,

β̂j =
1

M

M−1
∑

k=0

B̂(νk)e2πiνkj .

This gives a periodic sequence—we might truncate at j = M/2.
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Lagged regression models in the frequency domain

Here is the approach:

1. Estimate the spectral density and cross-spectral density.

2. Compute the transfer function B̂(ν).

3. Take the inverse Fourier transform to obtain the impulse response

function βj .
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Lagged regression models in the frequency domain

It is often useful to consider both representations

Yt =

∞
∑

j=−∞

αjXt−j , Xt =

∞
∑

j=−∞

βjYt−j ,

since there might be a more parsimonious representation in terms of one

than the other. (Just as a small AR model often cannot be well

approximated by a small MA model.)
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Lagged regression models in the frequency domain

In the Xt =SOI/Yt =Recruitment example (Example 3.18), we obtain

Yt = −22Xt−5 − 15Xt−6 − 12Xt−7 − 10Xt−8 − 9Xt−9 − · · · ,

Xt = 0.012Yt+4 − 0.018Yt+5,

and the latter is equivalent to

(1 − 0.667B)Yt = −56B5Xt.
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