Introduction to Time Series Analysis. Lecture 25.

- 1. Lagged regression models.
- 2. Review: lagged regression in the time domain
- 3. Cross spectrum. Coherence.
- 4. Lagged regression in the frequency domain.

Lagged regression models

Consider a lagged regression model of the form

$$Y_t = \sum_{h=-\infty}^{\infty} \beta_h X_{t-h} + V_t,$$

where X_t is an observed input time series, Y_t is the observed output time series, and V_t is a stationary noise process.

This is useful for

- Identifying the (best linear) relationship between two time series.
- Forecasting one time series from the other.

Lagged regression models: Agenda

- Review of multiple, jointly stationary time series in the time domain: cross-covariance function, sample CCF.
- Lagged regression in the time domain: model the input series, extract the white time series driving it ('prewhitening'), regress with transformed output series.
- Review of jointly stationary time series in the time domain: cross spectrum, coherence.
- Lagged regression in the frequency domain: Calculate the input's spectral density, and the cross-spectral density between input and output, and find the transfer function relating them, in the frequency domain. Then the regression coefficients are the inverse Fourier transform of the transfer function.

Review: Cross-covariance

The *cross-covariance function* of two jointly stationary processes $\{X_t\}$ and $\{Y_t\}$ is

$$\gamma_{xy}(h) = \mathbf{E}\left[(X_{t+h} - \mu_x)(Y_t - \mu_y) \right].$$

Their cross-correlation function is

$$\rho_{xy}(h) = \frac{\gamma_{xy}(h)}{\sqrt{\gamma_x(0)\gamma_y(0)}}.$$

So $\rho_{xy}(h) = \rho_{yx}(-h)$.

Example: For $Y_t = \beta X_{t-\ell} + W_t$ for stationary $\{X_t\}$, white uncorr. $\{W_t\}$,

$$\gamma_{xy}(h) = \beta^2 \gamma_x(h+\ell).$$

If $\ell > 0$, we say X_t leads Y_t . If $\ell < 0$, we say X_t lags Y_t .

Review: lagged regression in the time domain

Suppose we wish to fit a lagged regression model of the form

$$Y_t = \alpha(B)X_t + \eta_t = \sum_{j=0}^{\infty} \alpha_j X_{t-j} + \eta_t,$$

where X_t is an observed input time series, Y_t is the observed output time series, and η_t is a stationary noise process, uncorrelated with X_t .

- 1. Fit $\theta_x(B)$, $\phi_x(B)$ to model the input series $\{X_t\}$.
- 2. *Prewhiten* the input series by applying the inverse operator $\phi_x(B)/\theta_x(B)$:

$$\tilde{Y}_t = \frac{\phi_x(B)}{\theta_x(B)} Y_t = \alpha(B) W_t + \frac{\phi_x(B)}{\theta_x(B)} \eta_t.$$

Review: Lagged regression in the time domain

3. Calculate the cross-correlation of \tilde{Y}_t with W_t ,

$$\gamma_{\tilde{y},w}(h) = \mathbf{E}\left(\sum_{j=0}^{\infty} \alpha_j W_{t+h-j} W_t\right) = \sigma_w^2 \alpha_h,$$

to give an indication of the behavior of $\alpha(B)$ (for instance, the delay).

4. Estimate the coefficients of $\alpha(B)$ and hence fit an ARMA model for the noise series η_t .

Coherence

To analyze lagged regression in the frequency domain, we'll need the notion of *coherence*, the analog of cross-correlation in the frequency domain.

Define the cross-spectrum as the Fourier transform of the cross-correlation,

$$f_{xy}(\nu) = \sum_{h=-\infty}^{\infty} \gamma_{xy}(h) e^{-2\pi i\nu h},$$
$$\gamma_{xy}(h) = \int_{-1/2}^{1/2} f_{xy}(\nu) e^{2\pi i\nu h} d\nu,$$

(provided that $\sum_{h=-\infty}^{\infty} |\gamma_{xy}(h)| < \infty$). Notice that $f_{xy}(\nu)$ can be complex-valued. Also, $\gamma_{yx}(h) = \gamma_{xy}(-h)$ implies $f_{yx}(\nu) = f_{xy}(\nu)^*$. Coherence

The squared coherence function is

$$\rho_{y,x}^2(\nu) = \frac{|f_{yx}(\nu)|^2}{f_x(\nu)f_y(\nu)}.$$

Compare this with the correlation $\rho_{y,x} = \text{Cov}(Y,X)/\sqrt{\sigma_x^2 \sigma_y^2}$. We can think of the squared coherence at a frequency ν as the contribution to squared correlation at that frequency.

(Recall the interpretation of spectral density at a frequency ν as the contribution to variance at that frequency.)

Estimating squared coherence

Recall that we estimated the spectral density using the smoothed squared modulus of the DFT of the series,

$$\hat{f}_x(\nu_k) = \frac{1}{L} \sum_{l=-(L-1)/2}^{(L-1)/2} |X(\nu_k - l/n)|^2$$
$$= \frac{1}{L} \sum_{l=-(L-1)/2}^{(L-1)/2} X(\nu_k - l/n) X(\nu_k - l/n)^*$$

We can estimate the cross spectral density using the same sample estimate,

$$\hat{f}_{xy}(\nu_k) = \frac{1}{L} \sum_{l=-(L-1)/2}^{(L-1)/2} X(\nu_k - l/n) Y(\nu_k - l/n)^*.$$

Coherence

Also, we can estimate the squared coherence using these estimates,

$$\hat{
ho}_{y,x}^2(
u) = rac{|\hat{f}_{yx}(
u)|^2}{\hat{f}_x(
u)\hat{f}_y(
u)}.$$

(Knowledge of the asymptotic distribution of $\hat{\rho}_{y,x}^2(\nu)$ under the hypothesis of no coherence, $\rho_{y,x}(\nu) = 0$, allows us to test for coherence.)

Consider a lagged regression model of the form

$$Y_t = \sum_{j=-\infty}^{\infty} \beta_j X_{t-j} + V_t,$$

where X_t is an observed input time series, Y_t is the observed output time series, and V_t is a stationary noise process.

We'd like to estimate the coefficients β_j that determine the relationship between the lagged values of the input series X_t and the output series Y_t .

The projection theorem tells us that the coefficients that minimize the mean squared error,

$$\mathbf{E}\left[\left(Y_t - \sum_{j=-\infty}^{\infty} \beta_j X_{t-j}\right)^2\right]$$

satisfy the orthogonality conditions

$$\mathbf{E}\left[\left(Y_t - \sum_{j=-\infty}^{\infty} \beta_j X_{t-j}\right) X_{t-k}\right] = 0, \qquad k = 0, \pm 1, \pm 2, \dots$$
$$\sum_{j=-\infty}^{\infty} \beta_j \gamma_x (k-j) = \gamma_{yx}(k), \qquad k = 0, \pm 1, \pm 2, \dots$$

We could solve these equations for the β_j using the sample autocovariance and sample cross-covariance. But it is more convenient to use estimates of the spectra and cross-spectrum.

We replace the autocovariance and cross-covariance with the inverse Fourier transforms of the spectral density and cross-spectral density in the orthogonality conditions,

$$\sum_{j=-\infty}^{\infty} \beta_j \gamma_x(k-j) = \gamma_{yx}(k), \qquad k = 0, \pm 1, \pm 2, \dots$$

This gives, for $k = 0, \pm 1, \pm 2, \ldots$,

$$\int_{-1/2}^{1/2} \sum_{j=-\infty}^{\infty} \beta_j e^{2\pi i\nu(k-j)} f_x(\nu) d\nu = \int_{-1/2}^{1/2} e^{2\pi i\nu k} f_{yx}(\nu),$$
$$\int_{-1/2}^{1/2} e^{2\pi i\nu k} B(\nu) f_x(\nu) d\nu = \int_{-1/2}^{1/2} e^{2\pi i\nu k} f_{yx}(\nu),$$

where $B(\nu) = \sum_{j=-\infty}^{\infty} e^{-2\pi i\nu j} \beta_j$ is the Fourier transform of the coefficient sequence β_j .

Since the Fourier transform is unique, the orthogonality conditions are equivalent to

$$B(\nu)f_x(\nu) = f_{yx}(\nu).$$

We can write the mean squared error at the solution as

$$\begin{aligned} \mathbf{E}\left[\left(Y_{t} - \sum_{j=-\infty}^{\infty} \beta_{j} X_{t-j}\right) Y_{t}\right] &= \gamma_{y}(0) - \sum_{j=-\infty}^{\infty} \beta_{j} \gamma_{xy}(-j) \\ &= \int_{-1/2}^{1/2} \left(f_{y}(\nu) - B(\nu) f_{xy}(\nu)\right) d\nu \\ &= \int_{-1/2}^{1/2} f_{y}(\nu) \left(1 - \frac{f_{yx}(\nu) f_{xy}(\nu)}{f_{x}(\nu) f_{y}(\nu)}\right) d\nu \\ &= \int_{-1/2}^{1/2} f_{y}(\nu) \left(1 - \frac{|f_{yx}(\nu)|^{2}}{f_{x}(\nu) f_{y}(\nu)}\right) d\nu \\ &= \int_{-1/2}^{1/2} f_{y}(\nu) \left(1 - \rho_{yx}^{2}(\nu)\right) d\nu. \end{aligned}$$

$$MSE = \int_{-1/2}^{1/2} f_y(\nu) \left(1 - \rho_{yx}^2(\nu)\right) d\nu.$$

Thus, $\rho_{yx}(\nu)^2$ indicates how the component of the variance of $\{Y_t\}$ at a frequency ν is accounted for by $\{X_t\}$. Compare this with the corresponding decomposition for random variables:

$$\mathbf{E}(y - \beta x)^2 = \sigma_y^2 (1 - \rho_{xy}^2).$$

We can estimate the β_j in the frequency domain:

$$\hat{B}(\nu_k) = \frac{\hat{f}_{yx}(\nu_k)}{\hat{f}_x(\nu_k)}$$

We can approximate the inverse Fourier transform of $\hat{B}(\nu)$,

$$\hat{\beta}_j = \int_{-1/2}^{1/2} e^{2\pi i\nu j} \hat{B}(\nu) d\nu$$

via the sum,

$$\hat{\beta}_j = \frac{1}{M} \sum_{k=0}^{M-1} \hat{B}(\nu_k) e^{2\pi i \nu_k j}.$$

This gives a periodic sequence—we might truncate at j = M/2.

Here is the approach:

- 1. Estimate the spectral density and cross-spectral density.
- 2. Compute the transfer function $\hat{B}(\nu)$.
- 3. Take the inverse Fourier transform to obtain the impulse response function β_j .

It is often useful to consider both representations

$$Y_t = \sum_{j=-\infty}^{\infty} \alpha_j X_{t-j}, \qquad X_t = \sum_{j=-\infty}^{\infty} \beta_j Y_{t-j},$$

since there might be a more parsimonious representation in terms of one than the other. (Just as a small AR model often cannot be well approximated by a small MA model.)

In the $X_t = SOI/Y_t = Recruitment example$ (Example 3.18), we obtain

$$Y_t = -22X_{t-5} - 15X_{t-6} - 12X_{t-7} - 10X_{t-8} - 9X_{t-9} - \cdots,$$

$$X_t = 0.012Y_{t+4} - 0.018Y_{t+5},$$

and the latter is equivalent to

$$(1 - 0.667B)Y_t = -56B^5X_t.$$