
Introduction to Time Series Analysis. Lecture 20.

1. Review: Spectral density estimation, sample autocovariance.

2. The periodogram and sample autocovariance.

3. Asymptotics of the periodogram.
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Estimating the Spectrum: Outline

• We have seen that the spectral density gives an alternative view of

stationary time series.

• Given a realization x1, . . . , xn of a time series, how can we estimate

the spectral density?

• One approach: replace γ(·) in the definition

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

with the sample autocovariance γ̂(·).

• Another approach, called the periodogram: compute I(ν), the squared

modulus of the discrete Fourier transform (at frequencies ν = k/n).
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Estimating the spectrum: Outline

• These two approaches are identical at the Fourier frequencies ν = k/n.

• The asymptotic expectation of the periodogram I(ν) is f(ν). We can

derive some asymptotic properties, and hence do hypothesis testing.

• Unfortunately, the asymptotic variance of I(ν) is constant.

It is not a consistent estimator of f(ν).

• We can reduce the variance by smoothing the periodogram—averaging

over adjacent frequencies. If we average over a narrower range as

n → ∞, we can obtain a consistent estimator of the spectral density.
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Review: Spectral density estimation

If a time series {Xt} has autocovariance γ satisfying
∑∞

h=−∞ |γ(h)| < ∞, then we define its spectral density as

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν < ∞.
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Review: Sample autocovariance

Idea: use the sample autocovariance γ̂(·), defined by

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n,

as an estimate of the autocovariance γ(·), and then use

f̂(ν) =

n−1
∑

h=−n+1

γ̂(h)e−2πiνh

for −1/2 ≤ ν ≤ 1/2.
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Review: Periodogram

The periodogram is defined as

I(ν) = |X(ν)|2

=
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνxt

∣

∣

∣

∣

∣

2

= X2
c (ν) + X2

s (ν).

Xc(ν) =
1√
n

n
∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n
∑

t=1

sin(2πtνj)xt.
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Periodogram

Since I(νj) = |X(νj)|2 for one of the Fourier frequencies νj = j/n (for

j = 0, 1, . . . , n − 1), the orthonormality of the ej implies that we can write

x∗x =





n−1
∑

j=0

X(νj)ej





∗



n−1
∑

j=0

X(νj)ej





=
n−1
∑

j=0

|X(νj)|2 =
n−1
∑

j=0

I(νj).

We can write this as

σ̂2
x =

1

n

n
∑

t=1

x2
t =

1

n

n−1
∑

j=0

I(νj).
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Periodogram

This is the discrete analog of the identity

σ2
x = γx(0) =

∫ 1/2

−1/2

fx(ν) dν.

(Think of I(νj) as the discrete version of f(ν) at the frequency νj = j/n,

and think of (1/n)
∑

νj
· as the discrete version of

∫

ν
·dν.)
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Estimating the spectrum: Periodogram

Why is the periodogram at a Fourier frequency the same as computing f(ν)

from the sample autocovariance?

Almost the same—they are not the same at ν0 = 0 when x̄ 6= 0.

But if either x̄ = 0, or we consider a Fourier frequency νj with

j ∈ {1, . . . , n − 1}, . . .
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Estimating the spectrum: Periodogram

I(νj) =
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνjxt

∣

∣

∣

∣

∣

2

=
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνj (xt − x̄)

∣

∣

∣

∣

∣

2

=
1

n

(

n
∑

t=1

e−2πitνj (xt − x̄)

)(

n
∑

t=1

e2πitνj (xt − x̄)

)

=
1

n

∑

s,t

e−2πi(s−t)νj(xs − x̄)(xt − x̄) =
n−1
∑

h=−n+1

γ̂(h)e−2πihνj ,

where the fact that νj 6= 0 implies
∑n

t=1 e−2πitνj = 0 (we showed this

when we were verifying the orthonormality of the Fourier basis) has

allowed us to subtract the sample mean in that case.
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Asymptotic properties of the periodogram

We want to understand the asymptotic behavior of the periodogram I(ν) at

a particular frequency ν, as n increases. We’ll see that its expectation

converges to f(ν).

We’ll start with a simple example: Suppose that X1, . . . , Xn are

i.i.d. N(0, σ2) (Gaussian white noise). From the definitions,

Xc(νj) =
1√
n

n
∑

t=1

cos(2πtνj)xt, Xs(νj) =
1√
n

n
∑

t=1

sin(2πtνj)xt,

we have that Xc(νj) and Xs(νj) are normal, with

EXc(νj) = EXs(νj) = 0.
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Asymptotic properties of the periodogram

Also,

Var(Xc(νj)) =
σ2

n

n
∑

t=1

cos2(2πtνj)

=
σ2

2n

n
∑

t=1

(cos(4πtνj) + 1) =
σ2

2
.

Similarly, Var(Xs(νj)) = σ2/2.
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Asymptotic properties of the periodogram

Also,

Cov(Xc(νj), Xs(νj)) =
σ2

n

n
∑

t=1

cos(2πtνj) sin(2πtνj)

=
σ2

2n

n
∑

t=1

sin(4πtνj) = 0,

Cov(Xc(νj), Xc(νk)) = 0

Cov(Xs(νj), Xs(νk)) = 0

Cov(Xc(νj), Xs(νk)) = 0.

for any j 6= k.

13



Asymptotic properties of the periodogram

That is, if X1, . . . , Xn are i.i.d. N(0, σ2)

(Gaussian white noise; f(ν) = σ2), then the Xc(νj) and Xs(νj) are all

i.i.d. N(0, σ2/2). Thus,

2

σ2
I(νj) =

2

σ2

(

X2
c (νj) + X2

s (νj)
)

∼ χ2
2.

So for the case of Gaussian white noise, the periodogram has a chi-squared

distribution that depends on the variance σ2 (which, in this case, is the

spectral density).
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Asymptotic properties of the periodogram

Under more general conditions (e.g., normal {Xt}, or linear process {Xt}
with rapidly decaying ACF), the Xc(νj), Xs(νj) are all asymptotically

independent and N(0, f(νj)/2).

Consider a frequency ν. For a given value of n, let ν̂(n) be the closest

Fourier frequency (that is, ν̂(n) = j/n for a value of j that minimizes

|ν − j/n|). As n increases, ν̂(n) → ν, and (under the same conditions that

ensure the asymptotic normality and independence of the sine/cosine

transforms), f(ν̂(n)) → f(ν). (picture)

In that case, we have

2

f(ν)
I(ν̂(n)) =

2

f(ν)

(

X2
c (ν̂(n)) + X2

s (ν̂(n))
)

d→ χ2
2.
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Asymptotic properties of the periodogram

Thus,

EI(ν̂(n)) =
f(ν)

2
E

(

2

f(ν)

(

X2
c (ν̂(n)) + X2

s (ν̂(n))
)

)

→ f(ν)

2
E(Z2

1 + Z2
2) = f(ν),

where Z1, Z2 are independent N(0, 1). Thus, the periodogram is

asymptotically unbiased.
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Asymptotic properties of the periodogram

Since we know its asymptotic distribution (chi-squared), we can compute

approximate confidence intervals:

Pr

{

2

f(ν)
I(ν̂(n)) > χ2

2(α)

}

→ α,

where the cdf of a χ2
2 at χ2

2(α) is 1 − α. Thus,

Pr

{

2I(ν̂(n))

χ2
2(α/2)

≤ f(ν) ≤ 2I(ν̂(n))

χ2
2(1 − α/2)

}

→ 1 − α.
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Asymptotic properties of the periodogram: Consistency

Unfortunately, Var(I(ν̂(n))) → f(ν)2Var(Z2
1 + Z2

2 )/4, where Z1, Z2 are

i.i.d. N(0, 1), that is, the variance approaches a constant.

Thus, I(ν̂(n)) is not a consistent estimator of f(ν). In particular, if

f(ν) > 0, then for ε > 0, as n increases,

Pr
{∣

∣

∣I(ν̂(n)) − f(ν)
∣

∣

∣ > ε
}

approaches a constant.
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Asymptotic properties of the periodogram: Consistency

This means that the approximate confidence intervals we obtain are

typically wide.

The source of the difficulty is that, as n increases, we have additional data

(the n values of xt), but we use it to estimate additional independent

random variables, (the n independent values of Xc(νj), Xs(νj)).

How can we reduce the variance? The typical approach is to average

independent observations. In this case, we can take an average of “nearby”

values of the periodogram, and hope that the spectral density at the

frequency of interest and at those nearby frequencies will be close.
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