Introduction to Time Series Analysis. Lecture 1.
Peter Bartlett

. Organizational issues.

. Objectives of time series analysis. Examples.

. Overview of the course.
. Time series models.

. Time series modelling: Chasing stationarity.




‘Organizational Issues'

Peter Bartlett. bartlett@stat. Office hours: Thu 1:30-2:30 (Evans 399).
Fri 3-4 (Soda 527).

Brad Luen. bradluen@stat. Office hours: Tue/Wed 2-3pm (Room
TBA).

http://www.stat.berkeley.edu/~bartlett/courses/153-fall2005/
Check it for announcements, assignments, slides, ...

Text: Time Series Analysis and its Applications, Shumway and Stoffer.




‘Organizational Issues'

Computer Labs: Wed 12-1 and Wed 2-3, in 342 Evans.
You need to choose one of these times. Please email bradluen@stat with
your preference. First computer lab sections are on September 7.

Classroom Lab Section: Fri 12-1, in 330 Evans. First classroom lab
section Is on September 2.

Assessment:

Lab/Homework Assignments (40%): posted on the website.

These involve a mix of pen-and-paper and computer exercises. You may use
any programming language you choose (R, Splus, Matlab). The last
assignment will involve analysis of a data set that you choose.

Midterm Exam (25%): scheduled for October 20, at the lecture.

Final Exam (35%): scheduled for Thursday, December 15.




A Time Series

SP500: 1960-1990




A Time Series

SP500: Jan—Jun 1987
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1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45
year




A Time Series

SP500 Jan—Jun 1987. Histogram




A Time Series

SP500: Jan—Jun 1987. Permuted.




ODbjectivesof Time SeriesAnaIysisI

. Compact description of data.

. Interpretation.

. Forecasting.

. Control.
. Hypothesis testing.

. Simulation.




Classical decomposition: An example'

Monthly sales for a souvenir shop at a beach resort town in Queensland.

(Makridakis, Wheelwright and Hyndman, 1998)




\Tr ansfor med data.
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Residuals.
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Trend and seasonal variation
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ODbjectivesof Time SeriesAnaIysisI

. Compact description of data.
Example: Classical decomposition: Xy =Ty + 5 + Yy

. Interpretation. Example: Seasonal adjustment.

. Forecasting. Example: Predict sales.

. Control.
. Hypothesis testing.

. Simulation.
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‘ Unemployment data'

Monthly number of unemployed people in Australia. (ipe andmeLeod, 1004)

x 10°

1 1 1 1 1 1
1984 1985 1986 1987 1988 1989

15



4 | | | |
1983 1984 1985 1986 1987 1988 1989
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Trend plus seasonal variation

4 | | | |
1983 1984 1985 1986 1987 1988 1989
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Residuals

| | | |
1984 1985 1986 1987 1989
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‘ Predictions based on a (ssmulated) var iable.

4 1 1 1 1
1983 1984 1985 1986 1987 1989
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ODbjectivesof Time SeriesAnaIysisI

. Compact description of data:
Xe =Ty + S + f(Yy) + Wh.

. Interpretation. Example: Seasonal adjustment.
. Forecasting. Example: Predict unemployment.

. Control. Example: Impact of monetary policy on unemployment.

. Hypothesis testing. Example: Global warming.

. Simulation. Example: Estimate probability of catastrophic events.
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Overview of the Course'

1. Time series models
(a) Stationarity.

(b) Autocorrelation function.

(c) Transforming to stationarity.

2. Time domain methods
3. Spectral analysis

4. State space models(?)
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Overview of the Course'

1. Time series models

2. Time domain methods
(a) AR/ MA/ARMA models.
(b) ACF and partial autocorrelation function.

(c) Forecasting
(d) Parameter estimation
(e) ARIMA models/seasonal ARIMA models

3. Spectral analysis

4. State space models(?)
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Overview of the Course'

1. Time series models
2. Time domain methods

3. Spectral analysis

(a) Spectral density

(b) Periodogram

(c) Spectral estimation

4. State space models(?)
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Overview of the Course.

1. Time series models
2. Time domain methods
3. Spectral analysis

4. State space models(?)
(a) ARMAX models.

(b) Forecasting, Kalman filter.

(c) Parameter estimation.
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\TimeSeriesI\/IodeIs'

A time series model specifies the joint distribution of the se-
quence { X} of random variables.
For example:

PXi<zy,...,Xs <axyforall tand x4, ..., x;.

Notation:
X1,X5,...I1sastochastic process.

x1, X9, ...I1sasingle realization.

We’ll mostly restrict our attention to second-order propertiesonly:
EX:, E( X, Xt,).
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\TimeSeriesI\/IodeIs'

Example: White noise: X; ~ WN(0,02).
i.e., {X;} uncorrelated, EX; = 0, VarX; = o2,

Example: i.i.d. noise: { X} independent and identically distributed.

PXy <x,..., Xy <ay] = P[X1 <]+ PIX; <y
Not interesting for forecasting:

P[Xt S ZCt|X1, . -aXt—l] — P[Xt S ZCt].
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\ Gaussian white noise.

_fcg/zda:.
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Gaussian white noise

28



\TimeSeriesModeIsI

Example: Binary 1.1.d.
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Random walk '

Differences: V.S; = S; — S;—1 = X,.
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Random walk

ESt? VarSt?
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Random Walk

Recall S&P500 data. (Notice that it’s smooth)

SP500: Jan—Jun 1987
T T T

220 | | | | | | | | |
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45
year
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Random Walk

Differences:

SP500, Jan—-Jun 1987. first differences
T T T T

_10 | | | | | | | | |
1987 1987.05 1987.1 1987.15 1987.2 1987.25 1987.3 1987.35 1987.4 1987.45 1987.5
year
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\Trend and Seasonal I\/Iodels.

Xy =T, + St + By = Bo + Bit + >, (Bi cos(Ait) + s sin(At)) + E
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Trend and Seasonal M odels

Xe =Ty + By = PBo + Bit + By
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\Trend and Seasonal I\/Iodels.

Xy =T, + St + By = Bo + Bit + >, (Bi cos(Ait) + s sin(At)) + E
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Trend and Seasonal M odels: Residuals.
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TimeSeriesModeIIingI

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.
2. Transform data so that residuals are stationary.

(a) Estimate and subtract 73, .S;.

(b) Differencing.

(c) Nonlinear transformations (log, /-).

3. Fit model to residuals.
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Nonlinear transformations'

Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998)
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Recall: S&P 500 data.

SP500, Jan-Jun 1987. first differences

SP500: Jan-Jun 1987
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Differencing and Trend I

Define the lag-1 difference operator, (think ‘fi rst derivative')
VX, =X, — X;_1=(1-B)X,,
where B is the backshift operator, BX; = X;_1.
If X; = By + B1t + Yz, then

VX =01+ VY.

If X, = SF  Bit" + Y, then

VEX: = KBk + V'Y,

where VF X, = V(V*1X,)and VI X; = VX,.
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Differencing and Seasonal Variation I

Define the lag-s difference oper ator,

vth — Xt - Xt—s — (1 - BS)Xt,

where B? is the backshift operator applied s times, B*X; = B(B* 1X;)
and BlXt — BXt

If X; =1; +5S; +Y;, and S; has period s (that is, S; = S;_ for all ¢), then

vth — Tt — Tt—s + vs)/t
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L east Squares Regression I

Xt:

(Xl\

Xo




L east Squares Regression I

x=Z03+ w.

L east squares: choose 3 to minimize ||wl||* = ||z — Z3||*.

Solution (3 satisfies the normal equations:

Vellw|* = 22" (x — Z3) =0.

If Z’Z is nonsingular, the solution is unique:

B=(Z2'2)"7"z.




L east Squares Regression I

Properties of the least squares solution (3 = (Z2'Z)~ 7' z):

Linear.
Unbiased.

For {W,} i.i.d., itis the linear unbiased estimator with smallest
variance.

Other regressors Z: polynomial, trigonometric functions, piecewise
polynomial (splines), etc.
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Outline.

1. Objectives of time series analysis. Examples.

2. Overview of the course.
3. Time series models.

4. Time series modelling: Chasing stationarity.
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