
Introduction to Time Series Analysis. Lecture 19.

1. Review: Rational spectra. Poles and zeros. Linear filters.

2. Frequency response of linear filters.

3. Spectral estimation

4. Sample autocovariance

5. Discrete Fourier transform and the periodogram
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Review: Spectral density

If a time series {Xt} has autocovariance γ satisfying
∑∞

h=−∞ |γ(h)| <∞, then we define its spectral density as

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν <∞. We have

γ(h) =

∫ 1/2

−1/2

e2πiνhf(ν) dν.
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Review: Frequency response of a linear filter

If {Xt} has spectral density fx(ν) and the coefficients of the

time-invariant linear filter ψ are absolutely summable, then

Yt = ψ(B)Xt has spectral density

fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
fx(ν).
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Frequency response: Examples

For a linear process Yt = ψ(B)Wt, fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
σ2

w.

For an ARMA model, ψ(B) = θ(B)/φ(B), so {Yt} has the rational

spectrum

fy(ν) = σ2
w

∣

∣

∣

∣

θ(e−2πiν)

φ (e−2πiν)

∣

∣

∣

∣

2

= σ2
w

θ2
q

∏q
j=1

∣

∣e−2πiν − zj

∣

∣

2

φ2
p

∏p
j=1 |e−2πiν − pj |2

,

where pj and zj are the poles and zeros of the rational function

z 7→ θ(z)/φ(z).

4



Frequency response: Examples

Consider the moving average

Yt =
1

2k + 1

k
∑

j=−k

Xt−j .

This is a time invariant linear filter (but it is not causal). Its transfer function

is the Dirichlet kernel

ψ(e−2πiν) = Dk(2πν) =
1

2k + 1

k
∑

j=−k

e−2πijν

=







1 if ν = 0,
sin(2π(k+1/2)ν)
(2k+1) sin(πν) otherwise.
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Example: Moving average
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Example: Moving average
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Squared modulus of transfer function of moving average (k=5)

This is a low-pass filter: It preserves low frequencies and diminishes high

frequencies. It is often used to estimate a monotonic trend component of a

series.
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Example: Differencing

Consider the first difference

Yt = (1 −B)Xt.

This is a time invariant, causal, linear filter.

Its transfer function is

ψ(e−2πiν) = 1 − e−2πiν ,

so |ψ(e−2πiν)|2 = 2(1 − cos(2πν)).
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Example: Differencing
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Transfer function of first difference

This is a high-pass filter: It preserves high frequencies and diminishes low

frequencies. It is often used to eliminate a trend component of a series.
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Estimating the Spectrum: Outline

• We have seen that the spectral density gives an alternative view of

stationary time series.

• Given a realization x1, . . . , xn of a time series, how can we estimate

the spectral density?

• One approach: replace γ(·) in the definition

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

with the sample autocovariance γ̂(·).

• Another approach, called the periodogram: compute I(ν), the squared

modulus of the discrete Fourier transform (at frequencies ν = k/n).
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Estimating the spectrum: Outline

• These two approaches are identical at the Fourier frequencies ν = k/n.

• The asymptotic expectation of the periodogram I(ν) is f(ν). We can

derive some asymptotic properties, and hence do hypothesis testing.

• Unfortunately, the asymptotic variance of I(ν) is constant.

It is not a consistent estimator of f(ν).

• We can reduce the variance by smoothing the periodogram—averaging

over adjacent frequencies. If we average over a narrower range as

n→ ∞, we can obtain a consistent estimator of the spectral density.
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Estimating the spectrum: Sample autocovariance

Idea: use the sample autocovariance γ̂(·), defined by

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n,

as an estimate of the autocovariance γ(·), and then use a sample version of

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh,

That is, for −1/2 ≤ ν ≤ 1/2, estimate f(ν) with

f̂(ν) =

n−1
∑

h=−n+1

γ̂(h)e−2πiνh.
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Estimating the spectrum: Periodogram

Another approach to estimating the spectrum is called the periodogram. It

was proposed in 1897 by Arthur Schuster (at Owens College, which later

became part of the University of Manchester), who used it to investigate

periodicity in the occurrence of earthquakes, and in sunspot activity.

Arthur Schuster, “On Lunar and Solar Periodicities of Earthquakes,” Proceedings of

the Royal Society of London, Vol. 61 (1897), pp. 455–465.

To define the periodogram, we need to introduce the discrete Fourier

transform of a finite sequence x1, . . . , xn.
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Discrete Fourier transform

For a sequence (x1, . . . , xn), define the discrete Fourier transform (DFT) as

(X(ν0), X(ν1), . . . , X(νn−1)), where

X(νk) =
1√
n

n
∑

t=1

xte
−2πiνkt,

and νk = k/n (for k = 0, 1, . . . , n− 1) are called the Fourier frequencies.

(Think of {νk : k = 0, . . . , n− 1} as the discrete version of the frequency

range ν ∈ [0, 1].)

First, let’s show that we can view the DFT as a representation of x in a

different basis, the Fourier basis.
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Discrete Fourier transform

Consider the space C
n of vectors of n complex numbers, with inner product

〈a, b〉 = a∗b, where a∗ is the complex conjugate transpose of the vector
a ∈ Cn.

Suppose that a set {φj : j = 0, 1, . . . , n− 1} of n vectors in C
n are

orthonormal:

〈φj , φk〉 =







1 if j = k,

0 otherwise.

Then these {φj} span the vector space Cn, and so for any vector x, we can
write x in terms of this new orthonormal basis,

x =

n−1
∑

j=0

〈φj , x〉φj . (picture)
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Discrete Fourier transform

Consider the following set of n vectors in Cn:
{

ej =
1√
n

(

e2πiνj , e2πi2νj , . . . , e2πinνj
)′

: j = 0, . . . , n− 1

}

.

It is easy to check that these vectors are orthonormal:

〈ej , ek〉 =
1

n

n
∑

t=1

e2πit(νk−νj) =
1

n

n
∑

t=1

(

e2πi(k−j)/n
)t

=







1 if j = k,
1
ne

2πi(k−j)/n 1−(e2πi(k−j)/n)n

1−e2πi(k−j)/n otherwise

=







1 if j = k,

0 otherwise,
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Discrete Fourier transform

where we have used the fact that Sn =
∑n

t=1 α
t satisfies

αSn = Sn + αn+1 − α and so Sn = α(1 − αn)/(1 − α) for α 6= 1.

So we can represent the real vector x = (x1, . . . , xn)′ ∈ Cn in terms of this

orthonormal basis,

x =
n−1
∑

j=0

〈ej , x〉ej =
n−1
∑

j=0

X(νj)ej .

That is, the vector of discrete Fourier transform coefficients

(X(ν0), . . . , X(νn−1)) is the representation of x in the Fourier basis.
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Discrete Fourier transform

An alternative way to represent the DFT is by separately considering the

real and imaginary parts,

X(νj) = 〈ej , x〉 =
1√
n

n
∑

t=1

e−2πitνjxt

=
1√
n

n
∑

t=1

cos(2πtνj)xt − i
1√
n

n
∑

t=1

sin(2πtνj)xt

= Xc(νj) − iXs(νj),

where this defines the sine and cosine transforms, Xs and Xc, of x.
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Periodogram

The periodogram is defined as

I(ν) = |X(ν)|2

=
1

n

∣

∣

∣

∣

∣

n
∑

t=1

e−2πitνxt

∣

∣

∣

∣

∣

2

= X2
c (ν) +X2

s (ν).
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