Introduction to Time Series Analysis. Lecture 18.

. Review: Spectral density. Spectral distribution function.
. Rational spectra. Poles and zeros.

. Examples.

. Linear filters.

. Frequency response.




Review: Spectral density and spectral distribution function I

If a time series {X;} has autocovariance ~ satisfying
> re o |v(h)] < oo, then we define its spectral density as

fw)= > Alh)e "

h=—o0
for —oo < v < oo. We have
1/2 1/2
/ 627Tzz/hf(y) dy — / 627Tzz/h dF(V),
—1/2 —1/2

where dF' (v) = f(v)dv.

f measures how the variance of X, is distributed across the spectrum.




Review: Spectral density and spectral distribution function I

For any stationary { X} with autocovariance -, we can write

1/2 |
v = [ Emapw)
~1/2

where F' is the spectral distribution function of { X;}.

If ' has no singular part, we can write F = F(®) + F(@ where F(©) s
absolutely continuous with respect to Lebesgue measure, that is,
dF©)(v) = f(v)dv, and F(? js discrete.




Review: Spectral density of a linear process I

If X, is a linear process, it can be written X; = > ", W;_; = ¢(B)W,.
Then
2

flv) = o5 |¢ (e7™)]".

That is, the spectral density f(v) of a linear process measures the modulus
of the b (MA(c0)) polynomial at the point e>™* on the unit circle.




Spectral density of a linear process I

For an ARMA(p,q), v (B) = 0(B)/¢(B), so
5 9( —27sz)(9(627m'1/)

f<V) = Ow Qb( —27rzu) gb (6271'2'1/)

5 ‘9<€—27mz/)
w ¢(6—27m'1/)

This is known as a rational spectrum.
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‘ Rational spectra I

Consider the factorization of # and ¢ as

0(z) = 04z — 21)(2 — 22) -~ (= — 2)
B(2) = p(z — p1)(z — p2) -~ (= — pp).

where z1,..., 2, and py, ..., p, are called the zeros and poles.
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f(v) = o Oy 11— (e - zj)
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‘ Rational spectra I

2 q —2miv ..
5 Hq im1 ’e 2

Y, 2°

As v varies from 0 to 1/2, e=2™ moves clockwise around the unit circle
fromltoe ™ = —1.

And the value of f(v) goes up as this point moves closer to (further from)
the poles p, (zeros z;).

‘ 2

flv) =




‘ Example: ARMAI

Recall AR(1): ¢(z) =1 — ¢12. The poleisat 1/¢,. If o1 > 0, the pole is
to the right of 1, so the spectral density decreases as v moves away from 0.
If 1 < 0, the pole is to the left of —1, so the spectral density is at its

maximum when v = 0.5.

Recall MA(1): 0(z) =14 0,z. The zeroisat —1/6,. If 8, > 0, the zero is
to the left of —1, so the spectral density decreases as » moves towards —1.
If 6, < 0, the zero is to the right of 1, so the spectral density is at its
minimum when v = 0.




‘ Example: AR(2) I

Consider X; = ¢1 X1_1 + p2X;_o + W;. Example 3.5 in the text considers
this model with ¢1 = 1, ¢ = —0.9, and o2, = 1. In this case, the poles are
at p1, pe ~ 0.5555 + 70.8958 ~~ 1.054eT1-01567 ~ 1 54+2740.16165

Thus, we have

&

— o2 — p[2[e2miv — py[2’

fv)

and this gets very peaked when e 27" passes near 1.054¢ —27%0-16165,




Example: AR(2)

Spectral density of AR(2): Xt = Xt_1 -0.9 Xt_2 + Wt

| | Il

0.2 0.3 0.4
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‘ Example: Seasonal ARMAI

Consider X; = &1 X;_1o + W,.

B 1
- 1— &, B2’

»(B)

fw) =0 :

W~ Pe-2mil2r)(] — §,e2milr)
o !
Y1 — 2P cos(24mv) + D

Notice that f(v) is periodic with period 1/12.
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Example: Seasonal ARMA

Spectral density of AR(1),,: X, =+0.2 X _,, + W,

0.1 0.2 0.3 0.4
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‘ Example: Seasonal ARMAI

1—d22 =0 <« z:rew,

Another view:

with r— ‘(I)l‘—l/12’ 62’129 _ e—iarg(Cbl).

For ®; > 0, the twelve poles are at |®;|~1/12e*7/6 for
k=0,+1,.... 45,6

So the spectral density gets peaked as e =™ passes near
|(I)1‘_1/12 < {17 6—@'71'/6’ e—z’ﬂ'/S’ e—’iﬂ'/2’ €_i27T/3, e—z’571'/6’ _1}
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Example: Multiplicative seasonal ARMA I

Consider (1 — ®;B*?)(1 — ¢1B)X; = W,.

1
2
f(v) = oy (1 — 2P cos(24mv) + ®2)(1 — 2¢1 cos(2mv) + ¢2)

This is a scaled product of the AR(1) spectrum and the (periodic) AR(1)15
spectrum.

The AR(1)2 poles give peaks when e=2™* s at one of the 12th roots of 1;
the AR(1) poles give a peak near e 2™ = 1.
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Example: Multiplicative seasonal ARMA I

Spectral density of AR(1)AR(1)12: (1+0.5 B)(1+0.2 Blz) X =W,

0.1 0.15 0.2
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Time-invariant linear filters '

A filter is an operator; given a time series { X; }, it maps to a time series

{Y:}. We can think of a linear process X; = Z;?io Y ; Wi_; as the output of
a causal linear filter with a white noise input.

A time series {Y;} is the output of a linear filter A = {a;; :
t,j € Z} with input { X, } if

oo

Y, = Z ar ; X;.

J=—00
If a; ;—; Is Independent of ¢ (a;:—; = 1), then we say that the
filter is time-invariant.
If y; = 0 for 5 < 0, we say the filter +) is causal.

We’ll see that the name “filter’ arises from the frequency domain viewpoint.
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‘ Time-invariant linear filters: Examples I

1. Y, = X_, 1s linear, but not time-invariant.

2. Y, = 3(X;—1 + X¢ + Xeyq) is linear, time-invariant, but not causal:

if[j] <1,
Y; =

1
3
0 otherwise.

3. For polynomials ¢(B), 8(B) with roots outside the unit circle,
Y(B) = 0(B)/¢(B) is a linear, time-invariant, causal filter.
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Time-invariant linear filters I

The operation

Z i Xt

j=—00

Is called the convolution of X with .
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Time-invariant linear filters '

The sequence ¢ is also called the impulse response, since the output {Y;} of
the linear filter in response to a unit impulse,

1 ift=0,

0 otherwise,

X =

Vi =¢(B)X; = Z Vi Xi—j = Py

j=—00
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‘ Frequency response of a time-invariant linear filter I

Suppose that { X; } has spectral density f..(~) and ) is stable, that is,
Z;‘;_oo 75| < oco. ThenY; = ¢(B)X, has spectral density

fo () = [ (™) | fo ().

The function v — 1 (e?™") (the polynomial 1/(z) evaluated on the unit
circle) is known as the frequency response or transfer function of the linear
filter.

The squared modulus, v +— [1)(e?™*)|? is known as the power transfer
function of the filter.
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‘ Frequency response of a time-invariant linear filter I

For stable ¢, Y; = ¢)(B) X, has spectral density

£, ) = & ()| falw).

We have seen that a linear process, Y; = ¢(B) W%, is a special case, since
fy) = [@(e>™) [P0, = [(e*™)* fu (v).
When we pass a time series { X; } through a linear filter, the spectral density

Is multiplied, frequency-by-frequency, by the squared modulus of the
frequency response v — [y (e*™)|?.

This is a version of the equality Var(aX) = a?Var(X), but the equality is
true for the component of the variance at every frequency.

This is also the origin of the name “filter.”
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‘ Frequency response of a time-invariant linear filter I

Why is f, () = ¢ (e27)|* f.(v)? First,

o

Yy(h)=E | > ©iXej D UkXern—s

J=—00 k:—OO

— Z W Z VRE [ X4 n—1Xi—j]

J=—00 k=—o0

— Z 'ij Z ¢k7x(h+j—k): Z 'ij Z wh—i—j—l’}/:c(l)'

Itis easy to check that -2 || <ocoand ) ;7 |v.(h)| < oo imply
that > 77 |y (h)] < oo. Thus, the spectral density of y is defined.
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‘ Frequency response of a time-invariant linear filter I
Z ,Y(h)e—%m'yh

h=—oc0

D> W > nve(De P

o0
27sz —271'7le —2miv(h+7—1
E e E Ve (1 E Vhij—1€ (ht3=0)

Jj=—00 [=—00 h=—o0

_w 27T’Ll/j fa: Z w 6—27szh

h=—o0

_ W(eQm'/j)‘Qfx(V)
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