
Introduction to Time Series Analysis. Lecture 18.

1. Review: Spectral density. Spectral distribution function.

2. Rational spectra. Poles and zeros.

3. Examples.

4. Linear filters.

5. Frequency response.
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Review: Spectral density and spectral distribution function

If a time series {Xt} has autocovariance γ satisfying
∑∞

h=−∞
|γ(h)| <∞, then we define its spectral density as

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν <∞. We have

γ(h) =

∫ 1/2

−1/2

e2πiνhf(ν) dν =

∫ 1/2

−1/2

e2πiνh dF (ν),

where dF (ν) = f(ν)dν.

f measures how the variance of Xt is distributed across the spectrum.
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Review: Spectral density and spectral distribution function

For any stationary {Xt} with autocovariance γ, we can write

γ(h) =

∫ 1/2

−1/2

e2πiνhdF (ν),

where F is the spectral distribution function of {Xt}.

If F has no singular part, we can write F = F (c) + F (d), where F (c) is

absolutely continuous with respect to Lebesgue measure, that is,

dF (c)(ν) = f(ν)dν, and F (d) is discrete.
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Review: Spectral density of a linear process

If Xt is a linear process, it can be written Xt =
∑∞

i=0 ψiWt−i = ψ(B)Wt.

Then

f(ν) = σ2
w

∣

∣ψ
(

e−2πiν
)
∣

∣

2
.

That is, the spectral density f(ν) of a linear process measures the modulus

of the ψ (MA(∞)) polynomial at the point e2πiν on the unit circle.
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Spectral density of a linear process

For an ARMA(p,q), ψ(B) = θ(B)/φ(B), so

f(ν) = σ2
w

θ(e−2πiν)θ(e2πiν)

φ (e−2πiν)φ (e2πiν)

= σ2
w

∣

∣

∣

∣

θ(e−2πiν)

φ (e−2πiν)

∣

∣

∣

∣

2

.

This is known as a rational spectrum.
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Rational spectra

Consider the factorization of θ and φ as

θ(z) = θq(z − z1)(z − z2) · · · (z − zq)

φ(z) = φp(z − p1)(z − p2) · · · (z − pp),

where z1, . . . , zq and p1, . . . , pp are called the zeros and poles.

f(ν) = σ2
w

∣

∣

∣

∣

∣

θq

∏q
j=1(e

−2πiν − zj)

φp

∏p
j=1(e

−2πiν − pj)

∣

∣

∣

∣

∣

2

= σ2
w

θ2
q

∏q
j=1

∣

∣e−2πiν − zj

∣

∣

2

φ2
p

∏p
j=1 |e

−2πiν − pj |
2 .
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Rational spectra

f(ν) = σ2
w

θ2
q

∏q
j=1

∣

∣e−2πiν − zj

∣

∣

2

φ2
p

∏p
j=1 |e

−2πiν − pj |
2 .

As ν varies from 0 to 1/2, e−2πiν moves clockwise around the unit circle

from 1 to e−πi = −1.

And the value of f(ν) goes up as this point moves closer to (further from)

the poles pj (zeros zj).
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Example: ARMA

Recall AR(1): φ(z) = 1 − φ1z. The pole is at 1/φ1. If φ1 > 0, the pole is

to the right of 1, so the spectral density decreases as ν moves away from 0.

If φ1 < 0, the pole is to the left of −1, so the spectral density is at its

maximum when ν = 0.5.

Recall MA(1): θ(z) = 1 + θ1z. The zero is at −1/θ1. If θ1 > 0, the zero is

to the left of −1, so the spectral density decreases as ν moves towards −1.

If θ1 < 0, the zero is to the right of 1, so the spectral density is at its

minimum when ν = 0.
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Example: AR(2)

Consider Xt = φ1Xt−1 + φ2Xt−2 +Wt. Example 3.5 in the text considers

this model with φ1 = 1, φ2 = −0.9, and σ2
w = 1. In this case, the poles are

at p1, p2 ≈ 0.5555 ± i0.8958 ≈ 1.054e±i1.01567 ≈ 1.054e±2πi0.16165.

Thus, we have

f(ν) =
σ2

2

|e−2πiν − p1|2|e−2πiν − p2|2
,

and this gets very peaked when e−2πiν passes near 1.054e−2πi0.16165.
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Example: AR(2)
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Example: Seasonal ARMA

Consider Xt = Φ1Xt−12 +Wt.

ψ(B) =
1

1 − Φ1B12
,

f(ν) = σ2
w

1

(1 − Φ1e−2πi12ν)(1 − Φ1e2πi12ν)

= σ2
w

1

1 − 2Φ1 cos(24πν) + Φ2
1

.

Notice that f(ν) is periodic with period 1/12.
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Example: Seasonal ARMA
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Example: Seasonal ARMA

Another view:

1 − Φ1z
12 = 0 ⇔ z = reiθ,

with r = |Φ1|
−1/12, ei12θ = e−i arg(Φ1).

For Φ1 > 0, the twelve poles are at |Φ1|
−1/12eikπ/6 for

k = 0,±1, . . . ,±5, 6.

So the spectral density gets peaked as e−2πiν passes near

|Φ1|
−1/12 ×

{

1, e−iπ/6, e−iπ/3, e−iπ/2, e−i2π/3, e−i5π/6,−1
}

.
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Example: Multiplicative seasonal ARMA

Consider (1 − Φ1B
12)(1 − φ1B)Xt = Wt.

f(ν) = σ2
w

1

(1 − 2Φ1 cos(24πν) + Φ2
1)(1 − 2φ1 cos(2πν) + φ2

1)
.

This is a scaled product of the AR(1) spectrum and the (periodic) AR(1)12
spectrum.

The AR(1)12 poles give peaks when e−2πiν is at one of the 12th roots of 1;

the AR(1) poles give a peak near e−2πiν = 1.
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Example: Multiplicative seasonal ARMA
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Time-invariant linear filters

A filter is an operator; given a time series {Xt}, it maps to a time series
{Yt}. We can think of a linear process Xt =

∑∞

j=0 ψjWt−j as the output of
a causal linear filter with a white noise input.

A time series {Yt} is the output of a linear filter A = {at,j :

t, j ∈ Z} with input {Xt} if

Yt =
∞
∑

j=−∞

at,jXj .

If at,t−j is independent of t (at,t−j = ψj), then we say that the

filter is time-invariant.

If ψj = 0 for j < 0, we say the filter ψ is causal.

We’ll see that the name ‘filter’ arises from the frequency domain viewpoint.

16



Time-invariant linear filters: Examples

1. Yt = X−t is linear, but not time-invariant.

2. Yt = 1
3(Xt−1 +Xt +Xt+1) is linear, time-invariant, but not causal:

ψj =







1
3 if |j| ≤ 1,

0 otherwise.

3. For polynomials φ(B), θ(B) with roots outside the unit circle,

ψ(B) = θ(B)/φ(B) is a linear, time-invariant, causal filter.
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Time-invariant linear filters

The operation
∞
∑

j=−∞

ψjXt−j

is called the convolution of X with ψ.

18



Time-invariant linear filters

The sequence ψ is also called the impulse response, since the output {Yt} of

the linear filter in response to a unit impulse,

Xt =







1 if t = 0,

0 otherwise,

is

Yt = ψ(B)Xt =
∞
∑

j=−∞

ψjXt−j = ψt.
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Frequency response of a time-invariant linear filter

Suppose that {Xt} has spectral density fx(ν) and ψ is stable, that is,
∑∞

j=−∞
|ψj | <∞. Then Yt = ψ(B)Xt has spectral density

fy(ν) =
∣

∣ψ
(

e2πiν
)∣

∣

2
fx(ν).

The function ν 7→ ψ(e2πiν) (the polynomial ψ(z) evaluated on the unit

circle) is known as the frequency response or transfer function of the linear

filter.

The squared modulus, ν 7→ |ψ(e2πiν)|2 is known as the power transfer

function of the filter.
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Frequency response of a time-invariant linear filter

For stable ψ, Yt = ψ(B)Xt has spectral density

fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
fx(ν).

We have seen that a linear process, Yt = ψ(B)Wt, is a special case, since

fy(ν) = |ψ(e2πiν)|2σ2
w = |ψ(e2πiν)|2fw(ν).

When we pass a time series {Xt} through a linear filter, the spectral density

is multiplied, frequency-by-frequency, by the squared modulus of the

frequency response ν 7→ |ψ(e2πiν)|2.

This is a version of the equality Var(aX) = a2Var(X), but the equality is

true for the component of the variance at every frequency.

This is also the origin of the name ‘filter.’
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Frequency response of a time-invariant linear filter

Why is fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
fx(ν)? First,

γy(h) = E





∞
∑

j=−∞

ψjXt−j

∞
∑

k=−∞

ψkXt+h−k





=
∞
∑

j=−∞

ψj

∞
∑

k=−∞

ψkE [Xt+h−kXt−j ]

=

∞
∑

j=−∞

ψj

∞
∑

k=−∞

ψkγx(h+ j − k) =

∞
∑

j=−∞

ψj

∞
∑

l=−∞

ψh+j−lγx(l).

It is easy to check that
∑∞

j=−∞
|ψj | <∞ and

∑∞

h=−∞
|γx(h)| <∞ imply

that
∑∞

h=−∞
|γy(h)| <∞. Thus, the spectral density of y is defined.
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Frequency response of a time-invariant linear filter

fy(ν) =

∞
∑

h=−∞

γ(h)e−2πiνh

=
∞
∑

h=−∞

∞
∑

j=−∞

ψj

∞
∑

l=−∞

ψh+j−lγx(l)e−2πiνh

=
∞
∑

j=−∞

ψje
2πiνj

∞
∑

l=−∞

γx(l)e−2πiνl
∞
∑

h=−∞

ψh+j−le
−2πiν(h+j−l)

= ψ(e2πiνj)fx(ν)

∞
∑

h=−∞

ψhe
−2πiνh

=
∣

∣ψ(e2πiνj)
∣

∣

2
fx(ν).

23


