
Introduction to Time Series Analysis. Lecture 16.

1. Review: ARIMA and Seasonal ARMA

2. Seasonal ARIMA models

3. Spectral Analysis
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Review: Integrated ARMA Models: ARIMA(p,d,q)

For p, d, q ≥ 0, we say that a time series {Xt} is an

ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is

ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.
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Review: Pure seasonal ARMA Models

For P, Q ≥ 0 and s > 0, we say that a time series {Xt} is an

ARMA(P,Q)s process if Φ(Bs)Xt = Θ(Bs)Wt, where

Φ(Bs) = 1 −

P
∑

j=1

ΦjB
js,

Θ(Bs) = 1 +

Q
∑

j=1

ΘjB
js.

3



Pure seasonal ARMA Models

The ACF and PACF for a seasonal ARMA(P,Q)s are zero for h 6= si. For

h = si, they are analogous to the patterns for ARMA(p,q):

Model: ACF: PACF:

AR(P)s decays zero for i > P

MA(Q)s zero for i > Q decays

ARMA(P,Q)s decays decays
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Multiplicative seasonal ARMA Models

For p, q, P, Q ≥ 0 and s > 0, we say that a time series {Xt} is a

multiplicative seasonal ARMA model (ARMA(p,q)×(P,Q)s)

if Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Wt.

If, in addition, d, D > 0, we define the multiplicative seasonal
ARIMA model (ARIMA(p,d,q)×(P,D,Q)s)

Φ(Bs)φ(B)∇D
s ∇dXt = Θ(Bs)θ(B)Wt,

where the seasonal difference operator of order D is defined by

∇D
s Xt = (1 − Bs)DXt.
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Multiplicative seasonal ARMA Models

Notice that these can all be represented by polynomials

Φ(Bs)φ(B)∇D
s ∇d = Ξ(B), Θ(Bs)θ(B) = Λ(B).

But the difference operators imply that Ξ(B)Xt = Λ(B)Wt does not define

a stationary ARMA process (the AR polynomial has roots on the unit

circle). And representing Φ(Bs)φ(B) and Θ(Bs)θ(B) as arbitrary

polynomials is not as compact.

How do we choose p, q, P, Q, d, D?

First difference sufficiently to get to stationarity. Then find suitable orders

for ARMA or seasonal ARMA models for the differenced time series. The

ACF and PACF is again a useful tool here.
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Spectral Analysis

Idea: decompose a stationary time series {Xt} into a combination of

sinusoids, with random (and uncorrelated) coefficients.

Just as in Fourier analysis, where we decompose (deterministic) functions

into combinations of sinusoids.

This is referred to as ‘spectral analysis’ or analysis in the ‘frequency

domain,’ in contrast to the time domain approach we have considered so far.

The frequency domain approach considers regression on sinusoids; the time

domain approach considers regression on past values of the time series.
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A periodic time series

Consider Xt = A sin(2πνt) + B cos(2πνt), where A, B are uncorrelated,

mean zero, variance σ2.

Writing C2 = A2 + B2 and tanφ = B/A, we can think of this as

Xt = C cosφ sin(2πνt) + C sinφ cos(2πνt)

= C sin(2πνt + φ).

That is, A2 + B2 determines the amplitude, and B/A determines the phase

of Xt.
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A periodic time series

For Xt = A sin(2πνt) + B cos(2πνt), we have

µt = E[Xt] = 0

γ(t, t + h) = Cov(Xt, Xt+h)

= sin(2πνt) sin(2πν(t + h)) + cos(2πνt) cos(2πν(t + h))

= cos(2πνt − 2πν(t + h))

= cos(2πνh).

So {Xt} is a stationary time series. (But notice that it does not satisfy
∑

h |γ(h)| < ∞.)
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An aside: Some trigonometric identities

tan θ =
sin θ

cos θ
,

sin2 θ + cos2 θ = 1,

sin(a + b) = sin a cos b + cos a sin b,

cos(a + b) = cos a cos b − sin a sin b.
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A periodic time series

The random sinusoid Xt = A sin(2πνt) + B cos(2πνt), with uncorrelated
A, B, has sinusoidal autocovariance, γ(h) = cos(2πνh).

The autocovariance of the sum of two uncorrelated time series is the sum of
their autocovariances (recall HW2). Thus, the autocovariance of a sum of
random sinusoids is a sum of sinusoids with the corresponding frequencies:

Xt =
k
∑

j=1

(Aj sin(2πνjt) + Bj cos(2πνjt)) ,

γ(h) =
k
∑

j=1

σ2
j cos(2πνjh),

where Aj , Bj are all uncorrelated, mean zero, and
Var(Aj) = Var(Bj) = σ2

j .

11



A periodic time series

Xt =

k
∑

j=1

(Aj sin(2πνjt) + Bj cos(2πνjt)) , γ(h) =

k
∑

j=1

σ2
j cos(2πνjh).

Thus, we can represent γ(h) using a Fourier series. The coefficients are the

variances of the sinusoidal components.

The spectral density is the continuous analog: the Fourier transform of γ.

(The analogous spectral representation of a stationary process Xt involves

a stochastic integral—a sum of discrete components at a finite number of

frequencies is a special case. We won’t consider this representation in this

course.)
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Spectral density

If a time series {Xt} has autocovariance γ satisfying

∞
∑

h=−∞

|γ(h)| < ∞,

then we define its spectral density as

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν < ∞.
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Spectral density: Some facts

1. The series
∑∞

h=−∞ γ(h)e−2πiνh is absolutely summable.

This is because |eiθ| = | cos θ + i sin θ| = (cos2 θ + sin2 θ)1/2 = 1,

and because of the absolute summability of γ.

2. f is periodic, with period 1.

This is true since e−2πiνh is a periodic function of ν with period 1.

Thus, we can restrict the domain of f to −1/2 ≤ ν ≤ 1/2. (The text

does this.)

14



Spectral density: Some facts

3. f is even (that is, f(ν) = f(−ν)).
To see this, write

f(ν) =
−1
∑

h=−∞

γ(h)e−2πiνh + γ(0) +
∞
∑

h=1

γ(h)e−2πiνh,

f(−ν) =
−1
∑

h=−∞

γ(h)e−2πiν(−h) + γ(0) +
∞
∑

h=1

γ(h)e−2πiν(−h),

=

∞
∑

h=1

γ(−h)e−2πiνh, +γ(0) +

−1
∑

h=−∞

γ(−h)e−2πiνh

= f(ν).

4. f(ν) ≥ 0.
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Spectral density: Some facts

5. γ(h) =

∫ 1/2

−1/2

e2πiνhf(ν) dν.

∫ 1/2

−1/2

e2πiνhf(ν) dν =

∫ 1/2

−1/2

∞
∑

j=−∞

e−2πiν(j−h)γ(j) dν

=

∞
∑

j=−∞

γ(j)

∫ 1/2

−1/2

e−2πiν(j−h) dν

= γ(h) +
∑

j 6=h

γ(j)

2πi(j − h)

(

eπi(j−h) − e−πi(j−h)
)

= γ(h) +
∑

j 6=h

γ(j) sin(π(j − h))

π(j − h)
= γ(h).
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Example: White noise

For white noise {Wt}, we have seen that γ(0) = σ2
w and γ(h) = 0 for

h 6= 0.

Thus,

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh

= γ(0) = σ2
w.

That is, the spectral density is constant across all frequencies: each

frequency in the spectrum contributes equally to the variance. This is the

origin of the name white noise: it is like white light, which is a uniform

mixture of all frequencies in the visible spectrum.
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Example: AR(1)

For Xt = φ1Xt−1 + Wt, we have seen that γ(h) = σ2
wφ

|h|
1 /(1− φ2

1). Thus,

f(ν) =
∞
∑

h=−∞

γ(h)e−2πiνh =
σ2

w

1 − φ2
1

∞
∑

h=−∞

φ
|h|
1 e−2πiνh

=
σ2

w

1 − φ2
1

(

1 +

∞
∑

h=1

φh
1

(

e−2πiνh + e2πiνh
)

)

=
σ2

w

1 − φ2
1

(

1 +
φ1e

−2πiν

1 − φ1e−2πiν
+

φ1e
2πiν

1 − φ1e2πiν

)

=
σ2

w

(1 − φ2
1)

1 − φ1e
−2πiνφ1e

2πiν

(1 − φ1e−2πiν)(1 − φ1e2πiν)

=
σ2

w

1 − 2φ1 cos(2πν) + φ2
1

.
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