
Introduction to Time Series Analysis. Lecture 14.

Last lecture: Yule-Walker estimation

1. Maximum likelihood estimation

2. Large-sample distribution of MLE
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Maximum likelihood estimation

Suppose that X1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parameters φ ∈ R
p, θ ∈ R

q ,

σ2
w ∈ R+ is defined as the density of X = (X1, X2, . . . , Xn)′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where |A| denotes the determinant of a matrix A, and Γn is the

variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of φ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write







X1

...

Xn








︸ ︷︷ ︸

X

= C








X1 − X0
1

...

Xn − Xn−1
n








︸ ︷︷ ︸

U

where C is a lower triangular matrix with ones on the diagonal.

Take the variance of both sides to see that

Γn = CDC ′ where D = diag(P 0
1 , . . . , P n−1

n ).
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Maximum likelihood estimation

Thus, |Γn| = |C|2P 0
1 · · ·P n−1

n = P 0
1 · · ·P n−1

n and

X ′Γ−1
n X = U ′C ′Γ−1

n CU = U ′C ′C−T D−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(
(2π)nP 0

1 · · ·P n−1
n

)1/2
exp

(

−
1

2

n∑

i=1

(Xi − Xi−1

i )2/P i−1

i

)

=
1

(
(2πσ2

w)nr0
1 · · · r

n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

where ri−1

i = P i−1

i /σ2
w and

S(φ, θ) =
n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

The log likelihood of φ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w) −
1

2

n∑

i=1

log ri−1

i −
S(φ, θ)

2σ2
w

.

Differentiating with respect to σ2
w shows that the MLE (φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i .
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Summary: Maximum likelihood estimation

The MLE (φ̂, θ̂, σ̂2
w) satisfies

σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i ,

where ri−1

i = P i−1

i /σ2
w and

S(φ, θ) =

n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:

• Unconditional least squares. Drop the log ri−1

i terms.

• Conditional least squares. Also approximate the computation of xi−1

i by

dropping initial terms in S. e.g., for AR(2), all but the first two terms in S

depend linearly on φ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,

P t−1
t → σ2

w so rt−1
t → 1, and thus n−1

∑

i log ri−1

i → 0.
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Maximum likelihood estimation: Confidence intervals

For an ARMA(p,q) process, the MLE and un/conditional least

squares estimators satisfy




φ̂

θ̂



−




φ

θ



 ∼ AN




0,

σ2
w

n




Γφφ Γφθ

Γθφ Γθθ,





−1



 ,

where




Γφφ Γφθ

Γθφ Γθθ,



 = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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