
Introduction to Time Series Analysis. Lecture 14.

Last lecture: Yule-Walker estimation

1. Maximum likelihood estimation

2. Large-sample distribution of MLE
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Maximum likelihood estimation

Suppose that X1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parameters φ ∈ R
p, θ ∈ R

q ,

σ2
w ∈ R+ is defined as the density of X = (X1, X2, . . . , Xn)′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where |A| denotes the determinant of a matrix A, and Γn is the

variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of φ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write







X1

...

Xn








︸ ︷︷ ︸

X

= C








X1 − X0
1

...

Xn − Xn−1
n








︸ ︷︷ ︸

U

where C is a lower triangular matrix with ones on the diagonal.

Take the variance of both sides to see that

Γn = CDC ′ where D = diag(P 0
1 , . . . , P n−1

n ).
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Maximum likelihood estimation

Thus, |Γn| = |C|2P 0
1 · · ·P n−1

n = P 0
1 · · ·P n−1

n and

X ′Γ−1
n X = U ′C ′Γ−1

n CU = U ′C ′C−T D−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(
(2π)nP 0

1 · · ·P n−1
n

)1/2
exp

(

−
1

2

n∑

i=1

(Xi − Xi−1

i )2/P i−1

i

)

=
1

(
(2πσ2

w)nr0
1 · · · r

n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

where ri−1

i = P i−1

i /σ2
w and

S(φ, θ) =
n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

The log likelihood of φ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w) −
1

2

n∑

i=1

log ri−1

i −
S(φ, θ)

2σ2
w

.

Differentiating with respect to σ2
w shows that the MLE (φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i .
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Summary: Maximum likelihood estimation

The MLE (φ̂, θ̂, σ̂2
w) satisfies

σ̂2
w =

S(φ̂, θ̂)

n
,

and φ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i ,

where ri−1

i = P i−1

i /σ2
w and

S(φ, θ) =

n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:

• Unconditional least squares. Drop the log ri−1

i terms.

• Conditional least squares. Also approximate the computation of xi−1

i by

dropping initial terms in S. e.g., for AR(2), all but the first two terms in S

depend linearly on φ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,

P t−1
t → σ2

w so rt−1
t → 1, and thus n−1

∑

i log ri−1

i → 0.
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Maximum likelihood estimation: Confidence intervals

For an ARMA(p,q) process, the MLE and un/conditional least

squares estimators satisfy




φ̂

θ̂



−




φ

θ



 ∼ AN




0,

σ2
w

n




Γφφ Γφθ

Γθφ Γθθ,





−1



 ,

where




Γφφ Γφθ

Γθφ Γθθ,



 = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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