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Introduction to Time Series Analysis. Lecture 13.

1. Yule-Walker estimators
2. Large-sample distribution of Yule-Walker estimators

3. Yule-Walker example




Review: Yule-Walker estimation '

M ethod of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we choose ¢ so that v = 4.

Yule-Walker equations for ¢:

These are the forecasting equations.
We can use the Durbin-Levinson algorithm.




\ Yule-Walker estimation: Confidence intervals I

If { X} isan AR(p) process,
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Thus, we can use the sample PACF to test for AR order, and we can
calculate approximate confidence intervals for the parameters ¢.




Yule-Walker estimation: Confidence intervals

If { X} isan AR(p) process, and n is large,

o /n(d, — ¢,) is approximately N (0, &2f;1),

e with probability ~ 1 — «, ¢, is in the interval
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where ®,_,, /; isthe 1 — «/2 quantile of the standard normal.




Yule-Walker estimation: Confidence intervals

e With probability ~ 1 — «, ¢, Is In the ellipsoid

A / A A
{qbeRp: (@ —0) Ty (6 —0) < =i (p>},
where xi_, (p) isthe (1 — o) quantile of the chi-squared with p degrees of freedom.

To see this, notice that
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\Var (F}/Q(gﬁp - gbp)) =T/ var(¢, — ¢,)TL/2 = 1.

Thus, v =T12(¢, — ¢p) ~ N(0,62 /nI)

andso  —v'v ~ x2(p).
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Yule-Walker estimation I

It is also possible to define analogous estimators for ARMA(p,q) models
with ¢ > 0:

A(G) =91 —1) = = (I — p —UQZW s

where ¢)(B) = 6(B)/¢(B).

Because of the dependence on the 1;, these equations are nonlinear in ¢;, 0,
There might be no solution, or nonunigue solutions.

Also, the asymptotic efficiency of this estimator is poor: it has unnecessarily

high variance.




Efficiency of estimators I

Let »(1) and (2 be two estimators. Suppose that
o ~ AN(¢,07), P ~ AN(¢,03).

The asymptotic efficiency of (1) relative to ¢ is
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If e (gb, o), g£<2)) < 1 for all ¢, we say that ¢(2 is a more efficient
estimator of ¢ than ¢(%).

For example, for an AR(p) process, the moment estimator and the
maximum likelihood estimator are as efficient as each other.

For an MA(q) process, the moment estimator is less efficient than the
Innovations estimator, which is less efficient than the MLE.




Yule Walker estimation: Example I
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Yule Walker estimation: Example I

Suppose { X;} is an AR(1) process and the sample size n is large.

If we estimate ¢, we have

N A2
Var(¢;) ~ ! n¢1.

If we fit a larger model, say an AR(2), to this AR(1) process,

n n n
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Var(¢1) ~ 2 _1 #

We have lost efficiency.
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Yule Walker estimation: Example I

Sample ACF: Depth of Lake Huron, 1875 — 1972
T T T T




Yule Walker estimation: Example I

Sample PACF: Depth of Lake Huron, 1875 — 1972
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Yule Walker estimation: Example I

1.7379 1.4458
1.4458 1.7379

1.0538
—0.2668
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= 4(0) — $h72 = 0.4971
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Yule Walker estimation: Example I

Confidence intervals:

b1 £ Di_q/2 (3if51/n

do £ Di_q/2 (3if51/n) .
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= 1.0538 = 0.1908

= —0.2668 == 0.1908




