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Review (Lecture 1): Time series modelling and forecasting

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log,
√·).

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and inverting any

transformations.
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Review: Time series modelling and forecasting

Stationary time series models: ARMA(p,q).

• p = 0: MA(q),

• q = 0: AR(p).

We have seen that any causal, invertible linear process has:

an MA(∞) representation (from causality), and

an AR(∞) representation (from invertibility).

Real data cannot be exactly modelled using a finite number of parameters.

We choose p, q to give a simple but accurate model.
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Review: Time series modelling and forecasting

How do we use data to decide on p, q?

1. Use sample ACF/PACF to make preliminary choices of model order.

2. Estimate parameters for each of these choices.

3. Compare predictive accuracy/complexity of each (using, e.g., AIC).

NB: We need to compute parameter estimates for several different model

orders.

Thus, recursive algorithms for parameter estimation are important.

We’ll see that some of these are identical to the recursive algorithms for

forecasting.
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Review: Time series modelling and forecasting

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Parameter estimation

We want to estimate the parameters of an ARMA(p,q) model.

We will assume (for now) that:

1. The model order (p and q) is known, and

2. The data has zero mean.

If (2) is not a reasonable assumption, we can subtract the sample mean ȳ,

fit a zero-mean ARMA model,

φ(B)Xt = θ(B)Wt,

to the mean-corrected time series Xt = Yt − ȳ,

and then use Xt + ȳ as the model for Yt.
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Parameter estimation: Maximum likelihood estimator

One approach:

Assume that {Xt} is Gaussian, that is, φ(B)Xt = θ(B)Wt, where Wt is

i.i.d. Gaussian.

Choose φi, θj to maximize the likelihood:

L(φ, θ, σ2) = f(X1, . . . , Xn),

where f is the joint (Gaussian) density for the given ARMA model.

(c.f. choosing the parameters that maximize the probability of the data.)
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Parameter estimation: Maximum likelihood estimator

Advantages of MLE:

Efficient (low variance estimates).

Often the Gaussian assumption is reasonable.

Even if {Xt} is not Gaussian, the asymptotic distribution of the estimates

(φ̂, θ̂, σ̂2) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.

Need to choose a good starting point (often use other estimators for this).
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Preliminary parameter estimates

Yule-Walker for AR(p): Regress Xt onto Xt−1, . . . , Xt−p.

Durbin-Levinson algorithm with γ replaced by γ̂.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(q): with γ replaced by γ̂.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.

2. Use to estimate (unobserved) noise Wt.

3. Regress Xt onto Xt−1, . . . , Xt−p, Ŵt−1, . . . , Ŵt−q.

4. Regress again with improved estimates of Wt.

10



Yule-Walker estimation

For a causal AR(p) model φ(B)Xt = Wt, we have

E



Xt−i



Xt −
p

∑

j=1

φjXt−j







 = E(Xt−iWt) for i = 0, . . . , p

⇔ γ(0) − φ′γp = σ2 and

γp − Γpφ = 0,

where φ = (φ1, . . . , φp)
′, and we’ve used the causal representation

Xt = Wt +
∞
∑

j=1

ψjWt−j .
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Yule-Walker estimation

Method of moments: We choose parameters for which the moments are

equal to the empirical moments.

In this case, we choose φ so that γ = γ̂.

Yule-Walker equations for φ̂:







Γ̂pφ̂ = γ̂p,

σ̂2 = γ̂(0) − φ̂′γ̂p.

These are the forecasting equations.

We can use the Durbin-Levinson algorithm.
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Some facts about Yule-Walker estimation

• If γ̂(0) > 0, then Γ̂m is nonsingular.

• In that case, φ̂ = Γ̂−1

p γp defines the causal model

Xt − φ̂1Xt−1 − · · · − φ̂pXt−p = Wt, {Wt} ∼WN(0, σ̂2).

• If {Xt} is an AR(p) process,

φ̂ ∼ AN

(

φ,
σ2

n
Γ−1

p

)

, σ̂2 P→ σ2.

φ̂hh ∼ AN

(

0,
1

n

)

for h > p.

Thus, we can use the sample PACF to test for AR order, and we can

calculate approximate confidence intervals for the parameters φ.
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Yule-Walker estimation: Confidence intervals

If {Xt} is an AR(p) process, and n is large,

• √n(φ̂p − φp) is approximately N(0, σ̂2Γ̂−1

p ),

• with probability ≈ 1 − α, φp is in the ellipsoid
{

φ ∈ R
p :

(

φ̂p − φ
)

′

Γ̂p

(

φ̂p − φ
)

≤ σ̂2

n
χ2

1−α(p)

}

,

where χ2

1−α(p) is the (1−α) quantile of the chi-squared with p degrees of freedom.

• with probability ≈ 1 − α, φpj is in the interval

φ̂pj ± Φ1−α/2

σ̂√
n

(

Γ̂−1

p

)1/2

jj
,

where Φ1−α/2 is the 1 − α/2 quantile of the standard normal.
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