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Last lecture: Forecasting.
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2. Recursive method: Innovations algorithm.

1



Introduction to Time Series Analysis. Lecture 11.

1. Review: Forecasting.

2. Example: Innovations algorithm for forecasting an MA(1)

3. Linear prediction based on the infinite past

4. The truncated predictor

2



Review: One-step-ahead linear prediction

Xn
n+1 = φn1Xn + φn2Xn−1 + · · · + φnnX1

Γnφn = γn,

Pn
n+1 = E

(
Xn+1 −Xn

n+1

)2
= γ(0) − γ′nΓ−1

n γn,

Γn =











γ(0) γ(1) · · · γ(n− 1)

γ(1) γ(0) γ(n− 2)
...

. . .
...

γ(n− 1) γ(n− 2) · · · γ(0)











,

φn = (φn1, φn2, . . . , φnn)′, γn = (γ(1), γ(2), . . . , γ(n))′.
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Review: The innovations representation

Write the best linear predictor as

Xn
n+1 = θn1

(
Xn −Xn−1

n

)

︸ ︷︷ ︸

innovation

+θn2

(
Xn−1 −Xn−2

n−1

)
+· · ·+θnn

(
X1 −X0

1

)
.

The innovations are uncorrelated:

Cov(Xj −Xj−1

j , Xi −Xi−1

i ) = 0 for i 6= j.

We’ll see that this is useful for estimation.
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Example: Innovations algorithm for forecasting an MA(1)

Suppose that we have an MA(1) process {Xt} satisfying

Xt = Wt + θ1Wt−1.

Given X1, X2, . . . , Xn, we wish to compute the best linear forecast of

Xn+1, using the innovations representation,

X0
1 = 0, Xn

n+1 =
n∑

i=1

θni

(
Xn+1−i −Xn−i

n+1−i

)
.
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Example: Innovations algorithm for forecasting an MA(1)

An aside: The linear predictions are in the form

Xn
n+1 =

n∑

i=1

θniZn+1−i

for uncorrelated, zero mean random variables Zi. In particular,

Xn+1 = Zn+1 +
n∑

i=1

θniZn+1−i,

where Zn+1 = Xn+1 −Xn
n+1 (and all the Zi are uncorrelated).

This is suggestive of an MA representation. Why isn’t it an MA?
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Example: Innovations algorithm for forecasting an MA(1)

θn,n−i =
1

P i
i+1



γ(n− i) −
i−1∑

j=0

θi,i−jθn,n−jP
j

j+1



 .

P 0
1 = γ(0) Pn

n+1 = γ(0) −

n−1∑

i=0

θ2
n,n−iP

i
i+1.

The algorithm computes P 0
1 = γ(0), θ1,1 (in terms of γ(1));

P 1
2 , θ2,2 (in terms of γ(2)), θ2,1; P 2

3 , θ3,3 (in terms of γ(3)), etc.
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Example: Innovations algorithm for forecasting an MA(1)

θn,n−i =
1

P i
i+1



γ(n− i) −
i−1∑

j=0

θi,i−jθn,n−jP
j
j+1



 .

For an MA(1), γ(0) = σ2(1 + θ2
1), γ(1) = θ1σ

2.

Thus: θ1,1 = γ(1)/P 0
1 ;

θ2,2 = 0, θ2,1 = γ(1)/P 1
2 ;

θ3,3 = θ3,2 = 0; θ3,1 = γ(1)/P 2
3 , etc.

Because γ(n− i) 6= 0 only for i = n− 1, only θn,1 6= 0.
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Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process {Xt} satisfying

Xt = Wt + θ1Wt−1,

the innovations representation of the best linear forecast is

X0
1 = 0, Xn

n+1 = θn1

(
Xn −Xn−1

n

)
.

More generally, for an MA(q) process, we have θni = 0 for i > q.
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Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process {Xt},

X0
1 = 0, Xn

n+1 = θn1

(
Xn −Xn−1

n

)
.

This is consistent with the observation that

Xn+1 = Zn+1 +
n∑

i=1

θniZn+1−i,

where the uncorrelated Zi are defined by Zt = Xt −Xt−1
t for

t = 1, . . . , n+ 1.

Indeed, as n increases, Pn
n+1 → Var(Wt) (recall the recursion for Pn

n+1),

and θn1 = γ(1)/Pn−1
n → θ1.
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Recall: Forecasting an AR(p)

For the AR(p) process {Xt} satisfying

Xt =

p
∑

i=1

φiXt−i +Wt,

X0
1 = 0, Xn

n+1 =

p
∑

i=1

φiXn+1−i

for n ≥ p. Then

Xn+1 =

p
∑

i=1

φiXn+1−i + Zn+1,

where Zn+1 = Xn+1 −Xn
n+1.

The Durbin-Levinson algorithm is convenient for AR(p) processes.
The innovations algorithm is convenient for MA(q) processes.
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An aside: Forecasting an ARMA(p,q)

There is a related representation for an ARMA(p,q) process, based on the

innovations algorithm. Suppose that {Xt} is an ARMA(p,q) process:

Xt =

p
∑

j=1

φjXt−j +Wt +

q
∑

j=1

θjWt−j .

Consider the transformed process (C. F. Ansley, Biometrika 66: 59–65, 1979)

Zt =







Xt/σ if t = 1, . . . ,m,

φ(B)Xt/σ if t > m.

If p > 0, this is not stationary. However, there is a more general version of

the innovations algorithm, which is applicable to nonstationary processes.
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An aside: Forecasting an ARMA(p,q)

Let θn,j be the coefficients obtained from the application of the innovations

algorithm to this process Zt. This gives the representation

Xn
n+1 =







∑n

j=1
θnj

(

Xn+1−j −Xn−j

n+1−j

)

n < m,
∑p

j=1
φjXn+1−j +

∑q

j=1
θnj

(

Xn+1−j −Xn−j

n+1−j

)

n ≥ m

For a causal, invertible {Xt}:

E(Xn −Xn−1
n −Wn)2 → 0, θnj → θj , and Pn+1

n → σ2.

Notice that this illustrates one way to simulate an ARMA(p,q) process

exactly. Why?

15



Introduction to Time Series Analysis. Lecture 11.

1. Review: Forecasting.

2. Example: Innovations algorithm for forecasting an MA(1)

3. An aside: Innovations algorithm for forecasting an ARMA(p,q)

4. Linear prediction based on the infinite past

5. The truncated predictor

16



Linear prediction based on the infinite past

So far, we have considered linear predictors based on n observed values of

the time series:

Xn
n+m = P (Xn+m|Xn, Xn−1, . . . , X1).

What if we have access to all previous values, Xn, Xn−1, Xn−2, . . .?

Write

X̃n+m = P (Xn+m|Xn, Xn−1, . . .)

=
∞∑

i=1

αiXn+1−i.
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Linear prediction based on the infinite past

X̃n+m = P (Xn+m|Xn, Xn−1, . . .) =
∞∑

i=1

αiXn+1−i.

The orthogonality property of the optimal linear predictor implies

E
[

(X̃n+m −Xn+m)Xn+1−i

]

= 0, i = 1, 2, . . .

Thus, if {Xt} is a zero-mean stationary time series, we have

∞∑

j=1

αjγ(i− j) = γ(m− 1 + i), i = 1, 2, . . .
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Linear prediction based on the infinite past

If {Xt} is a causal, invertible, linear process, we can write

Xn+m =
∞∑

j=1

ψjWn+m−j +Wn+m, Wn+m =
∞∑

j=1

πjXn+m−j +Xn+m.

In this case,

X̃n+m = P (Xn+m|Xn, Xn−1, . . .)

= P (Wn+m|Xn, . . .) −
∞∑

j=1

πjP (Xn+m−j|Xn, . . .)

= −
m−1∑

j=1

πjP (Xn+m−j |Xn, . . .) −
∞∑

j=m

πjXn+m−j .
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Linear prediction based on the infinite past

X̃n+m = −

m−1∑

j=1

πjP (Xn+m−j|Xn, . . .) −

∞∑

j=m

πjXn+m−j .

That is, X̃n+1 = −
∞∑

j=1

πjXn+1−j ,

X̃n+2 = −π1X̃n+1 −
∞∑

j=2

πjXn+2−j,

X̃n+3 = −π1X̃n+2 − π2X̃n+1 −

∞∑

j=3

πjXn+3−j.

The invertible (AR(∞)) representation gives the forecasts X̃n
n+m.
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Linear prediction based on the infinite past

To compute the mean squared error, we notice that

X̃n+m = P (Xn+m|Xn, Xn−1, . . .) =
∞∑

j=1

ψjP (Wn+m−j |Xn, Xn−1, . . .)

+ P (Wn+m|Xn, Xn−1, . . .)

=
∞∑

j=m

ψjWn+m−j .

E (Xn+m − P (Xn+m|Xn, Xn−1, . . .))
2 = E





m−1∑

j=0

ψjWn+m−j





2

= σ2
w

m−1∑

j=0

ψ2
j .
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Linear prediction based on the infinite past

That is, the mean squared error of the forecast based on the infinite history

is given by the initial terms of the causal (MA(∞)) representation:

E
(

Xn+m − X̃n+m

)2

= σ2
w

m−1∑

j=0

ψ2
j .

In particular, for m = 1, the mean squared error is σ2
w.
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The truncated forecast

For large n, truncating the infinite-past forecasts gives a good

approximation:

X̃n+m = −
m−1∑

j=1

πjX̃n+m−j −
∞∑

j=m

πjXn+m−j

X̃n
n+m = −

m−1∑

j=1

πjX̃
n
n+m−j −

n+m−1∑

j=m

πjXn+m−j .

The approximation is exact for AR(p) when n ≥ p, since πj = 0 for j > p.

In general, it is a good approximation if the πj converge quickly to 0.
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Example: Forecasting an ARMA(p,q) model

Consider an ARMA(p,q) model:

Xt −

p
∑

i=1

φiXt−i = Wt +

q
∑

i=1

θiWt−i.

Suppose we have X1, X2, . . . , Xn, and we wish to forecast Xn+m.

We could use the best linear prediction, Xn
n+m.

For an AR(p) model (that is, q = 0), we can write down the coefficients φn.

Otherwise, we must solve a linear system of size n.

If n is large, the truncated forecasts X̃n
n+m give a good approximation. To

compute them, we could compute πi and truncate.

There is also a recursive method, which takes time O((n+m)(p+ q))...
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Recursive truncated forecasts for an ARMA(p,q) model

W̃n
t = 0 for t ≤ 0. X̃n

t =







0 for t ≤ 0,

Xt for 1 ≤ t ≤ n.

W̃n
t = X̃n

t − φ1X̃
n
t−1 − · · · − φpX̃

n
t−p

− θ1W̃
n
t−1 − · · · − θqW̃

n
t−q for t = 1, . . . , n.

W̃n
t = 0 for t > n.

X̃n
t = φ1X̃

n
t−1 + · · · + φpX̃

n
t−p + θ1W̃

n
t−1 + · · · + θqW̃

n
t−q

for t = n+ 1, . . . , n+m.
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Example: Forecasting an AR(2) model

Consider the following AR(2) model.

Xt +
1

1.21
Xt−2 = Wt.

The zeros of the characteristic polynomial z2 + 1.21 are at ±1.1i. We can
solve the linear difference equations ψ0 = 1, φ(B)ψt = 0 to compute the
MA(∞) representation:

ψt =
1

2
1.1−t cos(πt/2).

Thus, the m-step-ahead estimates have mean squared error

E(Xn+m − X̃n+m)2 =
m−1∑

j=0

ψ2
j .
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Example: Forecasting an AR(2) model

0 5 10 15 20 25 30
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ψ
i

AR(2): X
t
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t−2
 = W

t
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Example: Forecasting an AR(2) model
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Example: Forecasting an AR(2) model
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Example: Forecasting an AR(2) model
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