Introduction to Time Series Analysis. Lecture 11.
Peter Bartlett

Last lecture: Forecasting.

1. The innovations representation.

2. Recursive method: Innovations algorithm.
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‘ Review: One-step-ahead linear prediction I

Xg—l—l — ¢n1Xn + ¢n2Xn—1 + -+ ¢nnX1
anbn = Tn

n n 2 —
Pn—l—l =E (X’fl—l—l - Xn—l—l) — ’Y(O) - /%/zrnlfyna
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‘ Review: The innovations representation I

Write the best linear predictor as

’r?—l—l = On1 (Xn - Xg_l) +052 (Xn—l — Xg:%)‘F +0nn (Xl — X?) .

\ - 7
~~

innovation

The innovations are uncorrelated:
Cov(X; — X1 X; — X;7") = 0fori # j.

We’ll see that this i1s useful for estimation.
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Example: Innovations algorithm for forecasting an MA(1) I

Suppose that we have an MA(1) process { X} satisfying
Xt — Wt —|— (91Wt_1.

Given X1, X, ..., X,,, we wish to compute the best linear forecast of
Xna1, Using the innovations representation,

0, X1 = Z Oni (Xn+1—i - Xg;f—z) ’
i=1




Example: Innovations algorithm for forecasting an MA(1) I

An aside: The linear predictions are in the form

mn
el = E OniZni1—i
i=1

for uncorrelated, zero mean random variables Z;. In particular,

Xn—i—l — Zn—i—l + Z eniZn—i—l—ia
=1

where Z,, 1 = X,,41 — X, (and all the Z; are uncorrelated).
This is suggestive of an MA representation. Why isnt it an MA?




Example: Innovations algorithm for forecasting an MA(1) I

The algorithm computes Py = ~(0), 61 1 (in terms of v(1));
Py, 055 (in terms of v(2)), 62 1; P3, 03 3 (in terms of v(3)), etc.




Example: Innovations algorithm for forecasting an MA(1) I

For an MA(1), v(0) = o(1 + 6%), v(1)

Thus: 01 1 = ~(1)/Py;

P22 =0,021 =~(1)/Py;

033 =032 =0; 051 =~(1)/P3, etc.

Because y(n — ) # 0only fori =n —1,0nly ,,; # 0.




Example: Innovations algorithm for forecasting an MA(1) I

For the MA(1) process { X, } satisfying
Xy =Wy + 0 Wi_q,

the innovations representation of the best linear forecast is

X)) =0, P =0n (X — X2

More generally, for an MA(q) process, we have 6,,; = 0 for: > q.
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Example: Innovations algorithm for forecasting an MA(1) I

For the MA(1) process {X;},
X?=0, X', =0u(X,—X").

This i1s consistent with the observation that

Xnt1 = Znt+1 + Zan‘ZnH—z‘,
i=1

where the uncorrelated Z; are defined by Z; = X; — Xf‘l for
t=1,...,n+ 1.

Indeed, as n increases, Py’ ; — Var(W,) (recall the recursion for P’ ,),
and 6,,; = v(1)/P* 1 — 6.
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‘ Recall: Forecasting an AR(p) I

For the AR(p) process { X, } satisfying

VY
Xy = Z OiXe—i + W,
i—1

p
X? = O, Xf,?z_|_1 - Z Qban—l—l—i
i=1

for n > p. Then

p
Xpt1 = Z OiXn+1—i + Zn+1,
i—1

where Z,, 11 = X1 — X1

The Durbin-Levinson algorithm is convenient for AR(p) processes.
The innovations algorithm is convenient for MA(q) processes.

12
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An aside: Forecasting an ARMA(p,q) I

There is a related representation for an ARMA(p,q) process, based on the
iInnovations algorithm. Suppose that { X;} is an ARMA(p,q) process:

p q
Xe=) ¢ Xej+ Wit Y ;Wi
j=1 j=1

Consider the transformed process (C. F. Ansley, Biometrika 66: 59-65, 1979)

Xt/O' ift:].,...,m,
S(B)X,/o ift>m.

Zt:

If p > 0, this is not stationary. However, there is a more general version of
the innovations algorithm, which is applicable to nonstationary processes.
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An aside: Forecasting an ARMA(p,q) I

Let 0,, ; be the coefficients obtained from the application of the innovations
algorithm to this process Z;. This gives the representation

n s

Xn,, =
+1 D q e
j=1 ¢an+1—j + ijl enj (Xn—l—l—j — Xn—l—l—j) n>m

For a causal, invertible { X; }:
E(X, — X" ' —-W,)?—0,0, — 0;,and P?T+ — 52

Notice that this illustrates one way to simulate an ARMA(p,q) process
exactly.
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‘ Linear prediction based on the infinite past'

So far, we have considered linear predictors based on »n observed values of
the time series:

X’n

n—+m

— P(Xn—l—m|Xn7Xn—17 X °7X1)°

What if we have access to all previous values, X,,, X,,_1, X,,_2,...?

Write

Xn—l—m — P(Xn—l—m‘Xna Xn—la X )

®.@)
= E i X1
i—1
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‘ Linear prediction based on the infinite past'

Xn—l—m — P<Xn—|—m|Xn7 Xn—1,-. ) — Z O‘z’Xn—l—l—z'-
1=1

The orthogonality property of the optimal linear predictor implies

~

E [(Xn+m _ Xn+m)Xn+1_i} —0, i=1,2,...

Thus, if { X;} is a zero-mean stationary time series, we have

Y ayli— ) =v(m—1+1), i
j=1
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‘ Linear prediction based on the infinite past'

If { X;} isacausal, invertible, linear process, we can write

Xn—l—m — Z ijn—l—m—j + Wn—l—ma Wn+m — Zﬂ-an—l—m—j + Xn—l—m-
j=1 j=1

In this case,

~

Xn+m — P(Xn—i—m‘Xna Xn—l: s
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‘ Linear prediction based on the infinite past'

That 1s,

The invertible (AR(co)) representation gives the forecasts X"

n—+m:*

20



‘ Linear prediction based on the infinite past'

To compute the mean squared error, we notice that

~

Xn—l—m — P(Xn—l—m|Xn7 Xn—1,-. ) —
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‘ Linear prediction based on the infinite past'

That is, the mean squared error of the forecast based on the infinite history
IS given by the initial terms of the causal (MA(o0)) representation:

m—1

- 2
E (Xn+m _ Xn+m) =02 3"y

j:

In particular, for m = 1, the mean squared error is o2 .
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The truncated forecast I

For large n, truncating the infinite-past forecasts gives a good
approximation:

Xn—l—m

Xn—l—m — n—i—m i 7TJ N+m—7"

The approximation is exact for AR(p) when n > p, since m; = 0 for 5 > p.
In general, it is a good approximation if the ; converge quickly to 0.
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‘ Example: Forecasting an ARMA(p,q) model I

Consider an ARMA(p,q) model:

P q
X — Z OiXi—; = Wi + Z O Wi_;.
i=1 i=1

Suppose we have X1, Xo, ..., X,, and we wish to forecast X,, ..
We could use the best linear prediction, X .
For an AR(p) model (that is, ¢ = 0), we can write down the coefficients ¢,,.
Otherwise, we must solve a linear system of size n.

If n is large, the truncated forecasts X, give a good approximation. To

n—+m

compute them, we could compute 7; and truncate.

There is also a recursive method, which takes time O((n + m)(p + q))...
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‘ Recursive truncated forecasts for an ARMA(p,q) model I

0 fort <0,
X, forl1<t<n,.

~

Wr=0 fort<0. XI=

Wi =Xy =1 Xy = = Xy,

— Wy — =W, fort=1,...,n.

W, =0 fort > n.
X? — ¢1X?—1 +°"+¢pX?—p+91th—l +"'+9thn—q
fort=n+1,...,n+m.
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‘ Example: Forecasting an AR(2) model I

Consider the following AR(2) model.

1
X+ —X; o =W,.
t‘|‘1.21 t—2 !

The zeros of the characteristic polynomial 22 + 1.21 are at +1.17. We can
solve the linear difference equations o = 1, ¢(B)y; = 0 to compute the

MA(c0) representation:

1
Yy = 51.1_t cos(mt/2).

Thus, the m-step-ahead estimates have mean squared error

E<Xn—|—m o
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‘ Example: Forecasting an AR(2) model I

AR(2): X, +0.8264 X _, =W,
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Example: Forecasting an AR(2) model

AR(2): X, +0.8264 X _, =W,

T T T T T

T

- X

—©— one-step prediction
95% prediction interval
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‘ Example: Forecasting an AR(2) model I

AR(2): X, +0.8264 X _, =W,

T T

-o- X
—©— prediction
95% prediction interval
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