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I. Introduction



If the population Fréchet mean is unique, then questions of statistical
Fréchet mean estimation are well-posed and can be studied.

However, the literature is divided on uniqueness:

▶ Assume it? (...)

▶ Deduce it from other assumptions? (Sturm 2003, Afsari 2011,
Hotz-Huckemann 2015, Le Gouic-Loubes 2017, Cao-Monod 2022,
etc.)

▶ Test for it? (Eltzner 2020)

▶ Give up on it? (Ziezold 1977, Bhattacharya-Patrangenaru 2003,
Schötz 2022, Evans-AQJ 2024, etc.)



Even worse: In many examples, uniqueness is known to fail.

For example, Fréchet medians are typically non-unique in the tropical
projective space (Lin-Yoshida 2018):



How can we do meaningful statistical inference without uniqueness?



II. Problem Statement



Let (X, d) be a metric space and µ a probability measure on X.

Define its Fréchet mean set as

M(µ) := argmin
x∈X

ˆ
X
d2(x, y) dµ(y).

We take this to be the set of minimizers. In particular, it can be
empty, it can be a singleton, or it can have more than one point.
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Suppose µ is unknown but we have independent, identically-distributed
samples Y1, Y2, . . . from µ. How can we estimate the set M(µ)?

Natural idea is to consider the empirical Fréchet mean set:

M(µ̄n) := argmin
x∈X

1

n

n∑
i=1

d2(x, Yi).

Here, µ̄n := 1
n

∑n
i=1 δYi is the empirical distribution.
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How does M(µ̄n) converge to M(µ)?

One result is the “no false positives” property:

Theorem (Evans-AQJ 2024, Schötz 2022)

If (X, d) is finite-dimensional, then every empirical Fréchet mean is
close to some population Fréchet mean.



How does M(µ̄n) converge to M(µ)?

One result is the “no false positives” property:

Theorem (Evans-AQJ 2024, Schötz 2022)

If (X, d) is finite-dimensional, then we have

max
x̄n∈M(µ̄n)

min
x∈M(µ)

d(x̄n, x) → 0 (noFP)

almost surely.



Do we have an analogous “no false negatives” property? No:

Theorem (Evans-AQJ 2024)

If (X, d) is finite and #M(µ) > 1, then there exists a population
Fréchet mean which is not close to any empirical Fréchet mean.



Do we have an analogous “no false negatives” property? No:

Theorem (Evans-AQJ 2024)

If (X, d) is finite and #M(µ) > 1, then

max
x∈M(µ)

min
x̄n∈M(µ̄n)

d(x̄n, x) → 0 (noFN)

occurs with probability zero.



Is this bad news? Both properties of “no false positives” and “no false
negatives” are natural and desirable.

However, the empirical Fréchet mean is not the only estimator!

Question

Can we construct an estimator M̂n = M̂n(Y1, . . . , Yn) of M(µ) which
satisfies both “no false positives” and “no false negatives”?



Is this bad news? Both properties of “no false positives” and “no false
negatives” are natural and desirable.

However, the empirical Fréchet mean is not the only estimator!

Question

Can we construct an estimator M̂n = M̂n(Y1, . . . , Yn) of M(µ) which
satisfies both
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x̂n∈M̂n

min
x∈M(µ)
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max

x∈M(µ)
min
x̂n∈M̂

d(x̂n, x) → 0 (noFN)

almost surely?



Is this bad news? Both properties of “no false positives” and “no false
negatives” are natural and desirable.

However, the empirical Fréchet mean is not the only estimator!

Question

Can we construct an estimator M̂n = M̂n(Y1, . . . , Yn) of M(µ) which
satisfies

dH(M̂n,M(µ)) → 0

almost surely, where dH denotes the Hausdorff metric?

In this case we say that M̂n is dH-consistent.
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III. Main Results



The empirical Fréchet mean M(µ̄n) is “not large enough” to capture
all points of the population Fréchet mean M(µ).

So, let’s enlarge it.

For ε ≥ 0, define

M(µ; ε) :=

{
x ∈ X :

ˆ
X
d2(x, y) dµ(y) ≤ min

z∈X

ˆ
X
d2(z, y) dµ(y) + ε

}
called the ε-relaxed Fréchet mean. Note M(µ; 0) = M(µ).

Idea is to use M̂n := M(µ̄n, εn) for some carefully-chosen relaxation εn.



Know that εn = 0 leads to “no false positives”. More generally, εn → 0
leads to “no false positives” (Schötz 2022).

Can we get “no false negatives” by choosing εn → 0 sufficiently slowly?
In some simple examples, it is known that n−1/4 is dH-consistent
(Schötz 2022).

Is it always possible to find some sufficiently slow εn?

If yes, what is the fastest possible sufficiently slow εn?



Define the Fréchet functional and the empirical Fréchet functional via

Wµ(x) :=

ˆ
X
d2(x, y) dµ(y) and Wµ̄n(x) :=

1

n

n∑
i=1

d2(x, Yi)

for x ∈ X.

For each x ∈ X we have Wµ̄n(x) → Wµ(x) almost surely, by the SLLN.

But we need Wµ̄n → Wµ in some stronger sense in order to understand
how M(µ̄n) converges to M(µ).
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Theorem (Blanchard-AQJ)

If (X, d) is finite-dimensional, then there exists a number σ(µ) ∈ [0,∞)
such that εn = σ(µ)n−1/2(log log n)1/2 is the cutoff between
dH-consistency and dH-inconsistency:

▶ Any relaxation slower than εn gives a dH-consistent estimator.

▶ Any relaxation faster than εn gives a dH-inconsistent estimator.



Theorem (Blanchard-AQJ)

If (X, d) is finite-dimensional, then there exists a number σ(µ) ∈ [0,∞)
such that the relaxation scale εn = cn−1/2(log log n)1/2 for c > 0
satisfies:

▶ If c > σ(µ), then Mn(µ̄n, εn) is dH-consistent.

▶ If c < σ(µ), then Mn(µ̄n, εn) is not dH-consistent.



The critical parameter σ(µ) represents the maximal scale of the
difference of the fluctuations of Wµ̄n on M(µ):

σ(µ) :=
√
2 · sup

x,x′∈M(µ)

√
Var(d2(x, Y1)− d2(x′, Y1)).

This depends on the population distribution, so it is not known.

Some ways around this:

▶ Use any asymptotically slower rate, like εn ∝ n−1/2(log n)1/2.

▶ Upper bound σ(µ) using additional moment information.

▶ Estimate σ(µ) from the data.



Can we just replace n−1/2(log log n)1/2 with n−1/2?

Theorem (Blanchard-AQJ)

If (X, d) is finite-dimensional, then the relaxation εn = cn−1/2 leads to
estimator whose error probability decays like a Gaussian as a function
of c > 0.



Can we just replace n−1/2(log log n)1/2 with n−1/2?

Theorem (Blanchard-AQJ)

If (X, d) is finite-dimensional, then there exist numbers
m(µ), σ(µ) ∈ [0,∞) such that the relaxation εn = cn−1/2 for c ≥ m(µ)
satisfies

sup
δ>0

lim
n→∞

P (dH(M(µ̄n, εn),M(µ)) ≥ δ) ≤ exp

(
−(c−m(µ))2

σ2(µ)

)
.



How do these estimators work in practice?



Phylogenetic Application



In computational phylogenetics, one has data in the form of trees.

Classical geometry on the space is trees is the BHV metric
(Billera-Holmes-Vogtmann 2001), which has good and bad properties:

▶ Non-positive curvature, so Fréchet means are unique

▶ Stratified space, so locally Euclidean except at some singularities

▶ Hard to compute Fréchet means and geodesics

▶ Geodesics typically pass through the origin

▶ “Stickiness”



Alternative geometry is the tropical projective metric (Lin-Yoshida
2018), in which Fréchet medians are the object of interest. Different
properties than the BHV treespace:

▶ Not a stratified space, and no non-positive curvature

▶ Fréchet medians and geodesics are easily computable

▶ Geodesics typically do not pass through origin

▶ Fréchet medians typically non-unique



The tropical projective metric is a non-Euclidean metric on Rm, and

each tree on N leaves is embedded in R(
N
2 )−1 as its distance matrix.

Unrelaxed Fréchet medians are bad estimators:



In this setting of tropical projective treespace, we can exactly
implement an adaptive Fréchet median set estimation algorithm:

AdaptRelaxFermatWeberSet

We can implement this algorithm with standard convex optimization
and polyhedral geometry software.



A simulated 3-leaf data set (dimension
(
3
2

)
− 1 = 2).

Exact plots of the estimated regions:



A real 4-leaf data set of influenza evolution (dimension
(
4
2

)
− 1 = 5).

We plot projections of the estimated regions onto random
2-dimensional subspaces:



A real 5-leaf data set of influenza evolution (dimension
(
5
2

)
− 1 = 9).

We uniformly some points from the interior of the estimated region:



Practical takeaways:

▶ Unrelaxed Fréchet means may be missing information.

▶ Relaxation methods provide a very conservative outer estimate.

▶ Computational difficulty is high.



Future Work



Unrelaxed Fréchet means are too small, and relaxed Fr’echet means are
too big. How to balance these effects? Can we set up a rigorous
hypothesis testing framework?

Can we efficiently implement relaxed Fréchet mean set estimators in
other applications of interest?

Extend this theory to general ill-posed M -estimation problems?

What happens at the critical relaxation εn = σ(µ)n−1/2(log log n)1/2?

Concentration inequalities for the slow relaxation εn ∝ n−1/2(log n)1/2?



Thank you!
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