A Strong Duality Principle for Total Variation and Equivalence Couplings

Adam Quinn Jaffe

I. Stochastic processes

Theorem (Ernst-Kendall-Roberts-Rosenthal, 2019)

For any $\theta_{1}, \theta_{2} \in \mathbb{R}$, one can construct a probability space supporting

- a Brownian motion $B^{\theta_{1}}=\left\{B_{t}^{\theta_{1}}\right\}_{t \geq 0}$ with drift θ_{1},
- a Brownian motion $B^{\theta_{2}}=\left\{B_{t}^{\theta_{2}}\right\}_{t \geq 0}$ with drift θ_{2}, and
- a random time T with $T>0$ almost surely,
such that $B_{t}^{\theta_{1}}=B_{t}^{\theta_{2}}$ for all $0 \leq t \leq T$ almost surely.

In words:

- BM with drift "starts out as" a BM without drift.
- BMs with drift are all "locally equivalent" at time zero.
- The drift of a BM cannot be detected, if it is only observed up to an adversarially-chosen time.

Explicit construction based on Itô excursion theory.

Definition

Say that a pair of Borel probability measures $\left(P, P^{\prime}\right)$ on $D([0, \infty) ; \mathbb{R})$ has the germ coupling property (GCP) if one can construct a probability space supporting

- a stochastic process $X=\left\{X_{t}\right\}_{t \geq 0}$ with law P,
- a stochastic process $X^{\prime}=\left\{X_{t}^{\prime}\right\}_{t \geq 0}$ with law P^{\prime}, and
- a random time T with $T>0$ almost surely, such that $X_{t}=X_{t}^{\prime}$ for all $0 \leq t \leq T$ almost surely.

Know that $\left(W^{\theta_{1}}, W^{\theta_{2}}\right)$ has the GCP for all $\theta_{1}, \theta_{2} \in \mathbb{R}$, where W^{θ} denotes the law of BM with drift $\theta \in \mathbb{R}$.

Say P has the Brownian $G C P$ if $\left(P, W^{0}\right)$ has the GCP.
Which other pairs have the GCP?
II. Some vignettes

- Ω a Polish space,
- $\Delta:=\{(x, x) \in \Omega \times \Omega: x \in \Omega\}$ the diagonal in $\Omega \times \Omega$,
- P, P^{\prime} two Borel probability measures on Ω, and
- $\Pi\left(P, P^{\prime}\right)$ the space of all couplings of P and P^{\prime}.

Then (folklore):

$$
\sup _{A \in \mathcal{B}(\Omega)}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(\Delta))
$$

$$
\tilde{P} \text { ? }
$$

4ロ・4品〉4

$$
Q=P \wedge P^{\prime}
$$

$$
4 \square>4 \text { 可 } \downarrow \text { 引 }
$$

Q

$\tilde{Q}=Q \circ(i, i)^{-1}$

$\tilde{Q}+\gamma M \otimes M^{\prime}$

$\tilde{Q}+\gamma M \otimes M^{\prime}$

\tilde{P}

- Ω a Polish space,
- $\Delta:=\{(x, x) \in \Omega \times \Omega: x \in \Omega\}$ the diagonal in $\Omega \times \Omega$,
- P, P^{\prime} two Borel probability measures on Ω, and
- $\Pi\left(P, P^{\prime}\right)$ the space of all couplings of P and P^{\prime}.

Then (folklore):

$$
\sup _{A \in \mathcal{B}(\Omega)}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(\Delta))
$$

- $\Omega:=S^{\mathbb{N}}$ the space of sequences for a finite set S,
- $E_{0}:=\bigcup_{n \in \mathbb{N}}\left\{\left(x, x^{\prime}\right) \in \Omega \times \Omega:\left(x_{n}, x_{n+1}, \ldots\right)=\left(x_{n}^{\prime}, x_{n+1}^{\prime}, \ldots\right)\right\}$ the equivalence relation of eventual equality,
- $\mathcal{T}:=\bigcap_{n \in \mathbb{N}} \sigma\left(x_{n}, x_{n+1}, \ldots\right)$ the tail σ-algebra,
- P, P^{\prime} two Borel probability measures on Ω, and
- $\Pi\left(P, P^{\prime}\right)$ the space of all couplings of P and P^{\prime}.

Then (Griffeath 1974, Pitman 1976, Goldstein 1978):

$$
\sup _{A \in \mathcal{T}}\left|P(A)-P^{\prime}(A)\right|=0 \text { if and only if } \min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}\left(1-\tilde{P}\left(E_{0}\right)\right)=0
$$

- $\Omega:=S^{\mathbb{N}}$ the space of sequences for a finite set S,
- $\theta: \Omega \rightarrow \Omega$ the left-shift operation,
- $E_{\mathbb{Z}}:=\bigcup_{n \in \mathbb{Z}}\left\{\left(x, x^{\prime}\right) \in \Omega \times \Omega: \theta^{n}(x)=x^{\prime}\right\}$ the equivalence relation of shift-equivalence,
- $\mathcal{I}_{\mathbb{Z}}=\left\{A \in \mathcal{B}(\Omega): \theta^{-1}(A)=A\right\}$ the shift-invariant σ-algebra,
- P, P^{\prime} two Borel probability measures on Ω, and
- $\Pi\left(P, P^{\prime}\right)$ the space of all couplings of P and P^{\prime}.

Then (Aldous-Thorisson 1993):

$$
\sup _{A \in \mathcal{I}_{\mathbb{Z}}}\left|P(A)-P^{\prime}(A)\right|=0 \text { if and only if } \min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}\left(1-\tilde{P}\left(E_{\mathbb{Z}}\right)\right)=0
$$

Also have generalizations to sufficiently regular group and semigroup actions (Thorisson 1996, Georgii 1997).

$$
\sup _{A \in \mathcal{B}(\Omega)}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(\Delta))
$$

$$
\sup _{A \in \mathcal{T}}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}\left(1-\tilde{P}\left(E_{0}\right)\right) .
$$

$$
\sup _{A \in \mathcal{I}_{\mathbb{Z}}}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}\left(1-\tilde{P}\left(E_{\mathbb{Z}}\right)\right) .
$$

$$
\sup _{A \in \mathcal{G}}\left|P(A)-P^{\prime}(A)\right| \stackrel{?}{=} \min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(E)) .
$$

Many probability settings lead to the E-coupling problem

$$
\inf _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(E)),
$$

In general this problem is hard to solve and there are not many general-purpose tools available.

On the other hand, the \mathcal{G}-total variation problem

$$
\sup _{A \in \mathcal{G}}\left|P(A)-P^{\prime}(A)\right|
$$

is typically easy to analyze for probabilists.

These optimization problems are closely related! In fact, we'll see that they are often dual, in the sense of mathematical optimization.

I. Stochastic processes

II. Some vignettes
III. Problem statement
IV. Results
III. Problem statement

Notation:

- (Ω, \mathcal{F}) standard Borel space,
- $\mathcal{P}(\Omega, \mathcal{F})$ space of probability measures on (Ω, \mathcal{F}),
- $\Pi\left(P, P^{\prime}\right)$ space of couplings of $P, P^{\prime} \in \mathcal{P}(\Omega, \mathcal{F})$,
- E equivalence relation on Ω, and
- \mathcal{G} sub- σ-algebra of \mathcal{F}.

Definition

Say E is measurable if $E \in \mathcal{F} \otimes \mathcal{F}$. Say (E, \mathcal{G}) is strongly dual if E is measurable and if we have

$$
\sup _{A \in \mathcal{G}}\left|P(A)-P^{\prime}(A)\right|=\min _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(E)) .
$$

for all $P, P^{\prime} \in \mathcal{P}(\Omega, \mathcal{F})$.
Roughly speaking, $(\Delta, \mathcal{B}(\Omega)),\left(E_{0}, \mathcal{T}\right)$, and $\left(E_{\mathbb{Z}}, \mathcal{I}_{\mathbb{Z}}\right)$ are strongly dual.

Which pairs (E, \mathcal{G}) are strongly dual?

If E is given, then there is a natural choice of \mathcal{G} :

Lemma (AQJ)

If (E, \mathcal{G}) is strongly dual for some \mathcal{G}, then $\left(E, E^{*}\right)$ is strongly dual, where E^{*} is the E-invariant σ-algebra

$$
E^{*}:=\left\{A \in \mathcal{F}: \forall\left(x, x^{\prime}\right) \in E\left(x \in A \Leftrightarrow x^{\prime} \in A\right)\right\}
$$

Say that E is strongly dualizable if $\left(E, E^{*}\right)$ is strongly dual.

Connection to optimal transport?

Note that the E-coupling problem

$$
\inf _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(E)) .
$$

is exactly a Monge-Kantorovich problem with cost function

$$
c\left(x, x^{\prime}\right)=1-\mathbb{1}\left\{\left(x, x^{\prime}\right) \in E\right\} .
$$

In words: cost 0 to move within an equivalence class, and cost 1 to move between equivalence classes.

«ロ〉4司〉4 三〉

Classical Monge-Kantorovich theory (Rachev-Rüschendorf 1998, Villani 2009) requires topological regularity: Ω is a Polish space, \mathcal{F} is its Borel σ-algebra, and c is lower semi-continuous.

In our setting, this requires E to be closed in $\Omega \times \Omega$; in this case, Kantorovich duality and some standard tricks can show that E is strongly dualizable.

However, most interesting equivalence relations, from the point of view of probability, are F_{σ} (countable union of closed) in $\Omega \times \Omega$.
IV. Results

Some useful reductions:

It is easy to show that we always have weak dualizability, that

$$
\sup _{A \in E^{*}}\left|P(A)-P^{\prime}(A)\right| \leq \inf _{\tilde{P} \in \Pi\left(P, P^{\prime}\right)}(1-\tilde{P}(E))
$$

for all $P, P^{\prime} \in \mathcal{P}(\Omega, \mathcal{F})$. The difficult part is showing the reverse inequality and that the inf is attained.

We say that E is quasi-strongly dualizable if for all $P, P^{\prime} \in \mathcal{P}(\Omega, \mathcal{F})$ the following are equivalent:

- $P(A)=P^{\prime}(A)$ for all $A \in E^{*}$
- There exists $\tilde{P} \in \Pi\left(P, P^{\prime}\right)$ and $N \in \mathcal{F} \otimes \mathcal{F}$ with $\tilde{P}(N)=0$ and $(\Omega \times \Omega) \backslash E \subseteq N$.
Then E is strongly dualizable if and only if it is measurable and quasi-strongly dualizable.

Some basic descriptive set theory:

A measurable space (S, \mathcal{S}) is called a standard Borel space if there exists a Polish topology τ on Ω such that $\mathcal{S}=\mathcal{B}(\tau)$.

An equivalence relation E on a standard Borel space (Ω, \mathcal{F}) is called smooth if there exists a standard Borel space (S, \mathcal{S}) and a measurable function $\phi:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ such that $\left(x, x^{\prime}\right) \in E$ is equivalent to $\phi(x)=\phi\left(x^{\prime}\right)$.

Roughly speaking, E is smooth if and only if the quotient Ω / E can be given a natural standard Borel structure.

Lemma (AQJ)

The following are equivalent:
(i) E is smooth.
(ii) E^{*} is countably generated.
(iii) $E \in E^{*} \otimes E^{*}$.

The equivalence between (i) and (ii) is classical, but the equivalence with (iii) appears to be novel.

Theorem (AQJ)

Every smooth equivalence relation is strongly dualizable.
Consequence: All equivalence relations with G_{δ} (countable intersection of open) equivalence classes are strongly dualizable.

Idea of proof: Do the folklore coupling in $\left(\Omega, E^{*}\right)$ then "smooth things over" with conditional expectations.

$$
\tilde{P} \text { ? }
$$

$v=\mu \wedge \mu^{\prime}$

v

[^0]$$
v \circ(i, i)^{-1}
$$

$\tilde{Q}\left(\cdot x \cdot \mid E^{*}\right) \approx \mu\left(\cdot \mid E^{*}\right) \mu^{\prime}\left(\cdot \mid E^{*}\right)$

\tilde{Q}

$\tilde{Q}+\gamma M \otimes M^{\prime}$

$\tilde{Q}+\gamma M \otimes M^{\prime}$

\tilde{P}

However, many equivalence relations of interest are not smooth.

Instead, we have the following closure result:

Theorem (AQJ)

A countable increasing union of strongly dualizable equivalence relations is strongly dualizable.

Idea of proof: Apply strong duality, and iterate.

$$
\tilde{P} \text { ? }
$$

ムロ〉4司〉4

\tilde{P}_{1}

$$
\tilde{P}_{I}\left(\cdot \cap E_{l}\right)
$$

\tilde{P}_{2}

«ロ〉4司〉4 三〉

$$
\tilde{P}_{2}\left(\cdot \cap E_{2}\right)
$$

\tilde{p}_{2}

$$
\tilde{P}_{3}\left(\cdot \cap E_{3}\right)
$$

$$
4 \square>4 \text { 可 } \downarrow \text { 파 }
$$

$$
\tilde{P} \text { ? }
$$

ムロ〉4司〉4

$$
\tilde{P}_{I}\left(\cdot \cap E_{l}\right)
$$

$$
\sum_{n=1}^{2} \tilde{P}_{n}\left(\cdot \cap E_{n}\right)
$$

$\sum_{n=1}^{3} \tilde{P}_{n}\left(\cdot \cap E_{n}\right)$

$\sum_{n=1}^{\infty} \tilde{P}_{n}\left(\cdot \cap E_{n}\right)+\gamma M \otimes M^{\prime}$

$$
\sum_{n=1}^{\infty} \tilde{P}_{n}\left(\cdot \cap E_{n}\right)+\gamma M \odot M^{\prime}
$$

\tilde{P}

This shows strong dualizability for all hypersmooth (countable union of smooth) equivalence relations, and this covers most "reasonable" equivalence relations occurring in probability.

Thank you!

References

D. Aldous and H. Thorisson. Shift-coupling. Stochastic Process. Appl., 44(1):1-14, 1993.
P. A. Ernst, W. S. Kendall, G. O. Roberts, and J. S. Rosenthal. MEXIT: Maximal un-coupling times for stochastic processes. Stochastic Process. Appl., 129(2):355-380, 2019.
H.-O. Georgii. Orbit coupling. Ann. Inst, H. Poincaré Probab. Statist., 33(2):253-268, 1997.
S. Goldstein. Maximal coupling. Z. Wahrsch. Verw. Gebiete., 46(2):193-204, 1978.
D. Griffeath. A maximal coupling for Markov chains. Z. Wahrsch. Verw. Gebiete, 31:95-106, 1974.
S. Hummel and A. Q. Jaffe. Constructing maximal germ couplings of Brownian motion with drift. arxiv pre-print.
A. Q. Jaffe. A strong duality principle for equivalence couplings and total variation. Electron. J. Probab., 28, 1-33.
J. W. Pitman. On couplings of Markov chains. Z. Wahrsch. Verw. Gebiete, 35(4):315-322, 1976.
S. Rachev and L. Rüschendorf. Mass Transportation Problems. Volume 1 of Probability and its Applications. Springer-Verlag, New York, 1998.
H. Thorisson. Transforming random elements and shifting random fields. Ann. Probab., 24(4):2057-2064, 1996.
C. Villani. Optimal Transport: Old and New. Volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2009.

[^0]:

