
Stat 135, Fall 2006 A. Adhikari
HOMEWORK 5 SOLUTIONS

1. X̄ has the normal distribution with mean 0 and standard error 10/
√

25 = 2. So the values
of X̄ are, with overwhelming probability, going to be in the range −8 to 8. To plot the density:

> x ← seq(-8, 8, by=0.1)
> plot(x, dnorm(x, 0, 2), type=”l”)

You know that nσ̂2/σ2 has the chi-squared density with 24 degrees of freedom. Plug in the values
of n and σ2 to see that ˆsigma

2
= 4X where X has chi-squared density with 24 degrees of freedom.

By the change of variable formula, the density f of σ̂2 is calculated as

f(y) =
1
4
fX(y/4), y > 0

where fX is the chi-squared density of X. Since E(X) = 24 (the expectation of a chi-squared
variable is its degrees of freedom), you know that E(σ̂2) = 96, which gives you some sense of the
values to use for the horizontal axis of your plot:

> y ← seq(0, 300, by=0.1)
> plot(y, dchisq(y/4, 24)/4, type=”l”)
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2. We have a population size of N (which is the parameter we’re trying to estimate), G = 100
“good elements” (i.e. tagged fish) in the population, and a simple random sample of size n = 50.
We have observed X, the number of good elements in the sample.

So X has hypergeometric distribution with E(X) = n G
N . So N = n G

E(X) and the MOM estimate

is N̂ = n G
X , whose observed value is 250.

Example I of Sec 1.4.2 shows (after some translation of the notation) that N̂ above is also the
MLE of N .

3a. You have observed two exponential variables X1 and X2, and an indicator: I(X3 > 10).
The likelihood function is

lik(λ) = (λe−λX1) · (λe−λX2) · e−λ10



where the third factor is P (X3 > 10).
b. The log-likelihood is

l(λ) = 2 log λ − λ(X1 + X2 + 10)

which is maximized by (the usual differentiation etc)

λ̂ =
2

X1 + X2 + 10

The observed value of the estimate is 1/9.

4a. According to R, the mean of the sample is 3.61, roughly, so that’s your guess for µ. The
variance of the sample is S2 = 3.418, roughly. That’s your estimate for σ2. I have no problem with
you using ˆsigma

2
here, provided you fix things when you make the confidence interval below.

b. This is a confidence interval based on the t distribution with 15 degrees of freedom: 3.61±
1.753× 1.8488/sqrt16. The interval is (2.8, 4.42), roughly.

c. You know how to get a confidence interval for σ2, so do that first. You need the upper and
lower 5% points of the χ2

15 distribution: these are 24.996 and 7.261 respectively. You also need nσ̂2

which is equal to (n− 1)S2 which is 15× 3.418 = 51.27. The endpoints of the confidence interval
for σ2 are therefore 51.27/24.996 = 2.05 and 51.27/7.261 = 7.061.

Since the square root is a one-to-one function, the confidence interval for σ is obtained just by
taking square roots of the endpoints above. The interval is (1.432, 2.657). No, the negative square
root is not a problem. You figure out why.

d. The sample size has to be multiplied by 22 = 4, i.e. sample size around 64, in order to halve
the length of the interval. That is because the sample size appears as

√
n in the denominator of

the standard error of X̄. You can do a bit better because the value of t gets smaller as n increases,
but the sample size is still going to be around 60 or so.

5. Set up notation first. The variable with known expectation and variance is Y/n. This is
what we were calling X when we developed the method in class. Y/n has expectation µ = p0 = e−λ

and variance p0(1− p0)/n = e−λ(1− e−λ)/n.
The function to use is g(u) = − log(u). So g′(u) = −1/u and g”(u) = 1/u2.
By the δ method, the expectation of our estimate is approximately

g(µ) +
e−λ(1− e−λ)

2n
g”(µ) = − log(e−λ) +

e−λ(1− e−λ)
2n

· 1
e−2λ

= λ +
eλ − 1

2n

So the bias is approximately (eλ − 1)/2n.
By the δ method again, the variance of our estimate is approximately

e−λ(1− e−λ)
n

· 1
e−2λ

=
eλ − 1

n
=

1
n

[λ + λ2/2! + λ3/3! + · · ·]

noindent The maximum likelihood estimate of λ is X̄, our old friend the sample mean. This is easy
to guess, and the text derives it formally in Example A of Section 8.5. Its variance is λ/n because
the Poisson variance is λ. It’s clear that X̄ is more efficient, by a factor of

1 + λ/2! + λ2/3! + · · ·

6. Freebie.



7. The commands below will clean up the data as required.
> x← read.table(”http://www.stat.berkeley.users/ani/s135f06/HW5data1.txt”, header=TRUE)
> scores ← cbind(x[,2], x[,1])
> scores ← scores[ scores[,1]>0 & scores[,2]>0, ]
> scores[,1] ← 2*scores[,1]
a. The commands below will draw the histogram of the midterm scores with the data grouped

into fives. Replace 1 by 2, and change the labels appropriately, to get the histogram of final scores.
> hist(scores[,1], breaks=6, prob=TRUE, xlab=”midterm”, main=””)
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b. The boxplots are obtained by
> boxplot(data.frame(scores), names=c(”midterm”, ”final”))

The boxplots are quite consistent with the histograms: the final has a higher median and has a
left-hand tail.
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8. The normal qq-plot is linear when the data are the simulated normals, and clearly non-linear
when the data are the final exam scores. That’s no big surprise, since the distribution of final exam
scores is clearly non-normal.

> simnorm ← rnorm(500, 10, 3)
> qqnorm(simnorm, ylab=”quantiles of simulated normal”)



> qqnorm(scores[,2], ylab=”quantiles of final”)
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9. The stemleafs are easy; I won’t draw them all. The one with scale=2 is too long and too
detailed. It’s a toss-up between scale=0.5 and scale=1. I prefer the former because I can recover
all the data from it. The command used for that one was:

> stem(scores[,2], scale=0.5)

10. By now you don’t need me to tell you how to do the plot.
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a) It’s clear that more than half gained from the grading scheme, because most of the points



are above the line.
b) 137 students out of 231, more than half.
> sum(scores[,2] > scores[,1])
c) The line is too steep. E.g. if you look at the points corresponding to a midterm score of

about 35, the line is clearly at the high end of the corresponding final scores. And look at midterm
scores around 10 or so. The line is too low there. So I’d flatten the line a bit.

By how much? Wait till we’ve done regression.


