
Stat 135, Fall 2006 A. Adhikari
HOMEWORK 4 SOLUTIONS

1. The log of the normal density is

log f(x|µ, σ) = log
1√
2π
− log σ − (x− µ)2

2σ2

So the log likelihood function is

l(µ, σ) = n log
1√
2π
− n log σ −

∑n
i=1(Xi − µ)2

2σ2

a. If µ is a known constant then all you have to do is differentiate the log likelihood with respect
to σ, set equal to 0, and solve:

−n

σ̂
+

∑n
i=1(Xi − µ)2

σ̂3
= 0

so σ̂2 = 1
n

∑n
i=1(Xi − µ)2, no big surprise. Take the square root to get the MLE of σ.

b. This time treat σ as the constant and differentiate the log likelihood with respect to µ:

1
σ2

n∑
i=1

(Xi − µ̂) = 0

so µ̂ = X̄, again no big surprise.

c. We know that µ̂ is unbiased and has variance σ2/n. Now

d

dµ
[ log

1√
2π
− log σ − (x− µ)2

2σ2
] =

x− µ

σ2

So the Fisher information is

I(µ) = E[(
X − µ

σ2
)2] =

σ2

σ4
=

1
σ2

The Cramer-Rao bound says that no unbiased estimate has variance less than 1/nI(µ) = σ2/n =
V ar(µ̂). So µ̂ has the smallest variance among all unbiased estimates.

2a. Notice that the density is that of T +θ where T has the exponential density with parameter
1. Therefore the first moment of the density is µ1 = E(T ) + θ = 1 + θ, and therefore θ = µ1 − 1.
Therefore the MOM estimate is θ̂MOM = X̄ − 1.

b. It is important to notice that with probability 1, θ ≤ min(X1, X2, . . . , Xn). So the likelihood
function is

e−
∑n

i=1
(Xi−θ) = e−nX̄ · enθ

for θ ≤ min(X1, X2, . . . , Xn). This is an increasing function of θ so there is no need to differentiate
it to find its maximum. The function is maximized by the maximum possible value of θ, which is
min(X1, X2, . . . , Xn) by our earlier observation. So θ̂MLE = min(X1, X2, . . . , Xn).
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3. We have just one observation X from the uniform distribution on {1, 2, . . . , N}.
The first moment of the distribution is µ1 = (N + 1)/2, so N = 2µ1 − 1, so the MOM estimate

is N̂MOM = 2X − 1. The observed value of X is 888, so the observed value of N̂MOM is 1775.
The likelihood function is 1/N for N ≥ X. This is a decreasing function of N and is maximized

when N is at its minimum possible value. That’s X. So N̂MLE = X and its observed value is 888.

4. a) Let T be the time until the first failure. Then T is the minimum of five i.i.d. exponential
variables. What we have is one observation of T . Hence, the likelihood function is just its density:

lik(τ) = fT (t) =
5
τ
e−

5
τ

t

If you don’t know where that came from, look at Example A of Section 3.7, page 104. The minimum
of independent exponentials is itself an exponential.

b)

l(τ) = log 5− log τ − 5t

τ

l′(τ) = −1
τ

+
5t

τ2
= 0 ⇒ τ̂ = 5T

The observed value of T is given as 100 days so the observed value of τ̂ is 500 days.

c) Since T is exponential, the density of 5T is easy by the change of variable formula. But
here’s a calculation from first principles: Look at the cdf.

Fτ̂ (t) = P [τ̂ ≤ t] = P [5T ≤ t] = P [T ≤ t

5
] = FT (

t

5
) = 1− e−

5
τ
· t
5 = 1− e−

1
τ

t

This is the cdf of the exponential distribution with parameter 1/τ , which is the same exponential
density as that of the individual lifetimes.

d) The variance of the exponential with parameter 1
τ is τ2. Hence the standard error of the

estimate is simply τ .

5. I’m just going to assume that you read it.

In what follows I’ve written the code so that it’s more or less self-explanatory. I’m sure some
of you will have done things more efficiently.

6. Here is the basic code. You can make the histogram have more bars, add labels to the axes,
etc.

> alpha ← runif(1, min=2, max=4)
> lambda ← runif(1, min=1, max=2)
> firstsamp ← rgamma(200, shape = alpha, rate = lambda)
> hist(firstsamp, prob=TRUE)
> x ← seq(min(firstsamp), max(firstsamp), by=0.01)
> lines(x, dgamma(x, shape=alpha, rate=lambda))
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7. I will use firstsamp from the previous problem. You really should be multiplying the variances
by 199/200, but I’m prepared to ignore that.

> alpha.mm ← mean(firstsamp)ˆ2)/var(firstsamp)
> lambda.mm ← mean(firstsamp)/var(firstsamp)
> bigsample ← rgamma(200000, shape=alpha.mm, rate=lambda.mm)
> samples ← matrix(bigsample, nrow=200, ncol=1000)
> sampmeans ← colMeans(samples)
> sampvars ← apply(samples, 2, var)
> alphas ← sampmeansˆ2/sampvars
> lambdas ← sampmeans/sampvars

Now you’ve got your estimates; I’m sure you know how to draw the histograms. Both should be
roughly normal, like Fig 8.4. You can use points or your pen to mark the true values (alpha and
lambda from Problem 6) on the horizontal axes; you expect them to be somewhere around the
middle (the estimates are biased, so the true values will be somewhat off center), but you’ll have to
see what happens in your particular replication of the experiment. The estimated standard error
is simply the function sd applied separately to the two sets of estimates.

8. The only issue here is how to get the two values of ˆalpha. It goes without saying that we’re
using alphas from Problem 7.

> a.05 ← quantile(alphas, .05)
> a.95 ← quantile(alphas, .95)

Now it’s just a question of drawing the graphs, which I’m sure you know how to do. Use the option
lty with the command lines to get different line types, or use different colors and use a color printer.
Just make sure that the three curves are distinguishable.

9. The only difference between this exercise and Problem 7 is in how you get the samples. After
that the code is all the same. So:

> newbigsample ← sample(firstsamp, 200000, replace=TRUE)
and then you proceed as in Problem 7. The histograms should resemble those in Problem 7, perhaps
a bit more skewed.

10. The worked example in An Introduction to R is for the logistic density. You just have to
replace its log-likelihood function by that of the gamma, and remember to take the negative log-
likelihood because you’re using a minimizing command, not a maximizer. The vector of parameters
is p; its first element is alpha and the second is lambda.

> fn ← function(p)
− 200*p[1]*log(p[2])− (p[1]−1)*sum(log(firstsamp)) + p[2]*sum(firstsamp) + 200*log(gamma(p[1]))
> nlm(fn, p=c(alpha.mm, lambda.mm))

The estimates appear on the screen. Mine were near the center of the histograms in Problem 7,
but this exercise does not give a sense of how the MLEs vary.
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