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HOMEWORK 1 SOLUTIONS
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2. a) (iii) greater than 10
Because the section averages are different, the whole class will have somewhat more variability than
each section. After all, the data now spread from the lowest scores in the weaker section to the
highest scores in the strongest section.

b) Use the result of Problem 1. For Section 1,
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Now the class average, µclass, is the weighted average
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× (171750 + 74000)− 692 = 154 ⇒ σ = 12.41

3. Write xi − c = (xi − µ) + (µ− c) and play the same game as in Problem 1:
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(Why is the middle term equal to 0, you ask? Pull out the constant and see!) So you’re left with the
variance plus the square of something. That’s always going to be at least as large as the variance,
because the square is non-negative.



An alternative proof uses the heavier machinery of calculus:
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Convince yourself that this gives a minimum, not a maximum!
Now if we plug in µ for c, by definition we get that mseµ = σ2.

4. a) p̂=0.525 and the bootstrap standard error is√
p̂(1− p̂)

n
= 0.02497

Compare this with the conservative estimate for the standard error which is 0.025. So, the bootstrap
confidence interval is 0.525 ± (1.96)(0.02497) while the conservative confidence interval is 0.525 ±
(1.96)(0.025).

b) p̂=0.275 and so the bootstrap standard error is computed as 0.0223. The conservative
standard error is still 0.025. So, the bootstrap confidence interval is 0.275 ± (1.96)(0.0223) while the
conservative confidence interval is 0.275 ± (1.96)(0.025). Note that in both cases the conservative
confidence interval was centered around the same number as the bootstrap, but, it was a little wider.
And, the further p̂ is from 0.5, the bigger the difference in the interval width will be. However,
they will be pretty close to one another until p̂ gets near 0 or 1.

5. a) The standard deviation for the sample mean is estimated by 25/
√

10 = 2.5. So the
approx. confidence interval is 75348± 1.96× 2.5 or (75343, 75353), roughly.

b) (ii) is true, the rest are false. First, (i) is false because the average of the measurements
is simply known to be 75348 and there’s nothing to estimate. Next, (iii) and (iv) are about the
variability in the measurements themselves, not the variability in the average of the measurements.
The variability in the measurements is of the order of 25, not 2.5.

c) Can’t do it. There’s nothing in the model about the shape of the distribution of the errors,
so you don’t know what the shape of the distribution of the measurements will be.

d) n = 2, 400, roughly. We want the half-width of the confidence interval equal to 1. The
half-width of the interval is just 1.96 σ√

n
so setting this equal to 1 we get (approximating from the

data at hand)

1.96× 25√
n

= 1⇒
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n = 49

.

6. (9.05%, 13.19%). If you can find the percent of at-risk people in the sample, then the
confidence interval is easily calculated as in Problem 4. So let’s look at the sample of blood
pressures. Its distribution is normal, with center equal to the center of the 99% confidence interval,
which is 127.5 mm. You can figure out the SD of the sample by noticing that the half-width of the
99% confidence interval is 1.05 = 2.57SD√

n
so the SD of the sample is 10.21. Since the sample closely

follows the normal distribution we can figure out the percent of at-risk patients in the sample. In
standard units, at-risk corresponds to 140−127.5

10.21 = 1.22 and higher. P [Z ≥ 1.22] = 0.1112 so we
estimate that 11.12% of the population is “at risk.” The bootstrap standard error for this percentage

is
√

0.1112(1−0.1112)
n × 100% = 1.26% and then the confidence interval is 11.12%± (1.645)(1.26%)



It’s fine to convert use 139.5 instead of 140 in the normal curve calculation above. Your answer
will not be very different.

7. a)n!

b) (n− 1)! Fix card m1 in place k1 and permute the rest.

c) (n−1)!
n! = 1
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d) 1
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There are (n-2)! permutations in which card number m1 falls in place number k1 and card
number m2 falls in place number k2. So the probability is (n−2)!

n! = 1
n(n−1)

e) E(M) = V ar(M) = 1
Write M as the sum of n (dependent) indicator variables Ik, 1 ≤ k ≤ n. Ik is one if there is a

“match” at place number k and zero otherwise. Then each Ik has probability of success equal to 1
n
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So V ar(M) = 2− 12 = 1.

f) The distribution converges to Poisson(1).
If the Ik were independent then M would be Binomial(n, 1

n), which has expectation 1 and
variance 1− 1/n which goes to 1 as n gets large. The dependence goes away as n increases: if n is
very large and we observe that the top card is card number 1 (a match), then that knowledge tells
us very little about the chance that there is a match at any other spot in the deck. Now all you
have to do is review the result that says that if pn → 0 as n → ∞ while npn remains constant at
λ, then the limiting distribution of this Binomial (n, pn) variable is Poisson(λ).

8. a) Random variable.

b) Real number. E(X) = 3− 4θ.
c) Random variable.

9. a) False. X̄(n) is a random variable and E(X) is a constant.

b) True. This is our old familiar result that says the expectation of the mean of an i.i.d. sample
is just the population mean.

c) False. If n is large, there’s only a small probability that X̄(n) is exactly equal to E(X), or



exactly equal to any other number for that matter.

d) True, by the Law of Large numbers, or by the CLT.

10. Set X̄(n) approximately equal to E(X) = 3− 4θ and solve for θ to get your estimate

θ̂ =
3− X̄(n)

4

This construction has the comforting property that the expectation of the estimate is θ, which
is the number you’re trying to estimate:

E(θ̂) =
3− E(X̄(n))

4
=

3− E(X))
4

== θ

In other words θ̂ is an unbiased estimate of θ.


