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A. Adhikari

The statistical model for simple linear regression is

Yi = β0 + β1xi + εi, i = 1, 2, . . . , n

Here n is the number of observations, and
• x1, x2, . . . , xn are known constants.
• β0 and β1 are unknown constants (parameters of the model).
• ε1, ε2, . . . , εn are i.i.d. random errors. Their common distribution is normal with mean

0 and variance σ2. The common variance σ2 is an unknown constant and is a parameter of
the model.

Implications of the Model.

1. For each i, Yi is normal with mean β0 + β1xi and variance σ2. The Yi’s are independent
of each other.

2. Ȳ is normal with mean β0 + β1x̄ and variance σ2/n.

3. Estimates of the coefficients. The least-squares estimate of β1 is the slope of the
regression line, derived last time:

β̂1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

The least-squares estimate of β0 is the intercept of the regression line, also derived last time:

β̂0 = Ȳ − β̂1x̄

You can check that these are also the MLEs.

4. Distributions of the estimates. Since both β̂1 and β̂0 are linear combinations of the
Yi’s, they are both normally distributed.

5. Means of the estimates. Both the estimates are unbiased. Reason:

E(β̂1) =

∑n
i=1(xi − x̄)E(Yi − Ȳ )∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)β1(xi − x̄)∑n

i=1(xi − x̄)2
= β1

E(β̂0) = E(Ȳ ) − E(β̂1)x̄ = β0 + β1x̄− β1x̄ = β0

6. Variances of the estimates. Use the second form of the expression for β̂1 to see that

V ar(β̂1) =

∑n
i=1(xi − x̄)2σ2

[
∑n

i=1(xi − x̄)2]2
= σ2

[ 1∑n
i=1(xi − x̄)2

]
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Check that Cov(Yi, Ȳ ) = σ2/n for each i. Then use the second form of the expression for β̂1

again to observe that Ȳ and β̂1 are uncorrelated:

Cov(β̂1, Ȳ ) =

∑n
i=1(xi − x̄)Cov(Yi, Ȳ )∑n

i=1(xi − x̄)2
=

(σ2/n)
∑n

i=1(xi − x̄)∑n
i=1(xi − x̄)2

= 0

(Because they are jointly normal, they are in fact independent.) Now

V ar(β̂0) = V ar(Ȳ ) + V ar(β̂1)x̄
2 = σ2

[ 1

n
+

x̄2∑n
i=1(xi − x̄)2

]
You should check that

Cov(β̂0, β̂1) = − σ2
[ x̄∑n

i=1(xi − x̄)2

]
6. Estimate of the “mean value” at x0, that is, the height of the true line at

x = x0. You are given some value x0 of the variable x, and your task is to estimate the
height of the true line at this value. The parameter you must estimate is β0 + β1x0. Your
estimate will be the height of the regression line

M = β̂0 + β̂1x0 = Ȳ + β̂1(x0 − x̄)

The distribution of M is normal, with mean

E(M) = β0 + β1x0

and variance (obtained using the second form of the expression for M and the fact that Ȳ
and β̂1 are uncorrelated)

V ar(M) =
σ2

n
+ σ2

[ 1∑n
i=1(xi − x̄)2

]
(x0 − x̄)2 = σ2

[ 1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]

Summary
parameter estimate mean variance

true intercept reg. line intercept

β0 β̂0 β0 σ2
[

1
n

+ x̄2∑n

i=1
(xi−x̄)2

]
true slope reg. line slope

β1 β̂1 β1 σ2
[

1∑n

i=1
(xi−x̄)2

]
true height at x0 reg. line height at x0

β0 + β1x0 β̂0 + β̂1x0 β0 + β1x0 σ2
[

1
n

+ (x0−x̄)2∑n

i=1
(xi−x̄)2

]
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7. Predicting a new observation at x = x0. Suppose you are going to make a new ob-
servation (not one of the original n) at x = x0. According to the model, the new observation
will be the observed value of the random variable

Ynew = β0 + β1x0 + ε

where ε is a normal (0, σ2) error independent of all the original n errors.
The value Ynew has two parts: the height of the true line at x0, and the random error ε.

You can estimate the height of the true line using M above. Because E(ε) = 0, you can use
the value of M as your prediction of Ynew:

predicted value of Ynew is M = β̂0 + β̂1x0.

But now there are are two independent sources of error: the error in estimating the height
of the true line, and the error in using 0 as a prediction for ε. Thus the variance of the
prediction is

V ar(M) + V ar(ε) = σ2
[ 1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
+ σ2 = σ2

[ 1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

+ 1
]

8. Estimate of σ2. Define the ith residual to be ε̂i = Yi − (β̂0 + β̂1xi). For every i the
residual is normally distributed with mean 0. Of course the residuals are not independent
of each other (their sum is 0). But here is a fact I will not prove:

Let the residual sum of squares (RSS) be
∑n

i=1 ε̂2
i . Then RSS/σ2 has the chi-squared

distribution with n− 2 degrees of freedom. So

s2 =
RSS

n− 2
=

∑n
i=1 ε̂2

i

n− 2

is an unbiased estimate of σ2. Use s as an estimate of σ.

9. The t statistics. You can use 8 above and check the appropriate independence to show
for example that

β̂1 − β1

s
√

1∑n

i=1
(xi−x̄)2

has the t distribution with n− 2 degrees of freedom. This can be used to test the hypothesis
H0 : β1 = 0 versus HA : β1 6= 0, for example. Equivalently, it can be used to construct
confidence intervals for β1. For example, a 95% confidence interval for β1 is

β̂1 ± t∗s

√
1∑n

i=1(xi − x̄)2

where t∗ is the 97.5th percentile of the t distribution with n− 2 degrees of freedom.
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Inference for the other parameters can be performed in a similar manner. Just replace σ
by s, and the normal distribution by the t distribution with n− 2 degrees of freedom.

As always, if the sample sizes are large you can replace the t distribution by the normal.

10. Comparing two regressions. Sometimes it is useful to be able to compare two
regression lines and ask if they are in fact estimates for the same true line. A more common
question is to ask whether the slopes of two regression lines are in fact estimates of the same
slope. For example, if your population consists of men and women, you may have fitted a
line for the men and, independently, a line for the women. You may want to know whether
the slope for the men is the same as the slope for the women. Or you may want to estimate
the difference between the slopes.

Say the two true slopes are β1 and γ1, with estimates β̂1 and γ̂1 respectively. You get
the estimates by performing separate regressions on the two datasets. The distribution of
β̂1 − γ̂1 is normal with mean β1 − γ1 and variance equal to the sum of the variances of the
two estimates.

The variance of the difference involves the values of σ2
1 and σ2

2, the error variances of the
two models. Assuming that the error variance σ2 is the same for both models, an
unbiased estimate of the common σ2 is provided by the pooled estimate

s2
p =

RSS1 + RSS2

(n− 2) + (m− 2)

where RSS1 and RSS2 are the residual sums of squares for the two regressions, and n and m
are the two sample sizes. Inference for the difference β1 − γ1 can be performed by replacing
σ by sp, and the normal distribution by the t distribution with n+m−4 degrees of freedom.

If the two sample sizes are large the assumption of equal variances (and hence the pooling)
is not so important. You can think of β̂1 and γ̂1 as independent normal variables, and estimate
the variance of the difference by simply adding to two variances.
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