
Stat 135, Fall 2006 A. Adhikari
Midterm Review of General Results

We have studied two main aspects of inference: estimation and the testing of hypotheses.

ESTIMATION

I. Estimating the mean of a finite population. The population consists of N
numbers with mean µ and standard deviation σ. In case the population is divided into two
categories, the numbers are 0’s and 1’s, the mean is the proportion p of 1’s, and the SD is√

pq. 7.1, 7.2.

Random sampling (with or without replacement) results in observations X1, X2, . . . , Xn.
If the sampling is done with replacement, the Xi’s are i.i.d. If it is done without replacement,
the sample is called a simple random sample. Its elements all have the same distribution,
and indeed are exchangeable, but they are not independent. 7.3.

The sample average X̄ is an unbiased estimate of µ, whether the sampling is done with
replacement or without. The standard error of X̄ is σ/

√
n if the sampling is done with

replacement. This standard error must be multiplied by the finite population correction
factor if the sampling is done without replacement. 7.3.1, 7.3.2.

If the sampling is done with replacement, the CLT implies that for large n the sampling
distribution of X̄ will be approximately normal, no matter what the distribution of the
population. This can be used to construct confidence intervals for µ. The same holds in
the case of simple random sampling, provided n is large but small compared to N . 7.3.3.

If σ is unknown and n is large, the estimates σ̂ or S can be used in place of σ in the
calculation of the confidence interval. This is an example of bootstrapping. The estimate
S2 is unbiased for σ2. 7.3.2. When the sample size is large, σ̂ and S are almost equal.

If σ is unknown and and you are sampling without replacement a large number relative
to the population, then you have to be careful about corrections. The table at the end of
7.3.2 (page 214) has a summary, but you don’t have to memorize them for the midterm.

We discussed what “confidence” means, what confidence intervals can and cannot be
used for, and how to adjust what we know about the population mean in order to estimate
a population total. 7.3.2, 7.3.3.

II. Estimating parameters of an underlying distribution. Now the model is that
we have n i.i.d. observations from a distribution which has parameters. There are two main
techniques for estimating these parameters. 8.3.

IIA. The method of moments (8.4). The population moments are computed
from the underlying distribution, and are functions of the parameters. The sample mo-
ments are averages of powers of the sample. The sample moments are unbiased estimates
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of the corresponding population moments, and converge in probability to the correspoding
population moments.

To compute method of moments estimates,
(i) Calculate the population moments in terms of the parameters.
(ii) Re-write the results of (i) so that the parameters are expressed in terms of the

population moments.
(iii) The method of moments estimate of a parameter is its expression in (ii) with the

population moments replaced by the corresponding sample moments.

If the distribution of the method of moments estimate is known or can be approximated,
it may be possible to construct confidence intervals for the parameter.

Tools. Population moments can be computed directly from the population distribution,
or by using moment generating functions, 4.5. [You are not expected to work with
m.g.f.s on the midterm.] If the expectation and variance of the method of moments estimates
are not easy to compute directly, they can be approximated. The δ-method is one way to
do this 4.6.

IIB. Maximum likelihood (8.5.). The likelihood of the data is the joint density, or
the joint probability function in the discrete case, of the data. The data may be i.i.d. from
a distribution, or they may be dependent observations (e.g. multinomial), or they may be
functions of i.i.d. variables (e.g. in one of your homework problems, instead of i.i.d. X1,
X2, . . ., the observation was the minimum of the Xi’s).

To compute the maximum likelihood estimate of a parameter, treat the data as fixed
and maximize the likelihood as a function of the parameter. The maximizing value of the
parameter is the estimate. How you maximize the likelihood depends on the complexity of
the likelihood function. Don’t compute the log right away - first look at the likelihood itself
and see if it’s easy to maximize directly (e.g. in a couple of your homework problems the
likelihood was monotone). If not, and if it’s a product, take the log and now stare at the log
likelihood. Perhaps that’s easy to maximize directly. If not, take the derivative, set equal to
0, etc.

If you have n i.i.d. observations from an underlying density (or probability function)
that is smooth and well-behaved, the maximum likelihood estimate of the parameter θ has
nice properties when the sample size is large. It is consistent, it is asymptotically
unbiased, its approximate variance is 1/nI(θ) where I(θ) is the Fisher information,
and it is asymptotically normal. All this can be used to construct approximate confidence
intervals for θ. 8.5.2, 8.5.3.

The Cramer-Rao bound says that the variance of every unbiased estimate of θ based on
X1, X2, . . . , Xn is at least as large as 1/nI(θ). Just read the statement of Theorem A in 8.7.
So the MLE is asympotically efficient. And for a fixed n, if the MLE is unbiased and has
a variance equal to 1/nI(θ), then no other unbiased estimator can beat it. (However, there
may be a biased estimator with smaller variance ...!)
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TESTING

The set-up: X1, X2, . . . , Xn i.i.d. from some distribution which has an unknown param-
eter (maybe more than one). There is a claim about the value of an unknown parameter.
How to evaluate the claim?

Terminology. Null and alternative hypotheses, which may be simple or composite.
Composite hypotheses are often either one sided or two sided. A test has errors of Type
I and Type II. It also has a significance level, a rejection region whose boundary is
often specified by critical values, and an observed significance level which is also called
the P -value. It has power against each fixed value of the alternative. 9.1, 9.2.

General facts. These apply to likelihoods based on well-behaved density or probability
functions.

A. If both the hypotheses are simple, and if there is a test of level α that rejects the
null when the likelihood ratio is small, then the Neyman-Pearson Lemma says that the
likelihood ratio test is at least as powerful as any other test of the same or lower level. 9.2.

B. The generalized likelihood ratio is used to test composite hypotheses. As before,
the null hypothesis is rejected when the ratio is small. This can be used to set up rejection
regions to achieve a specified level. 9.4.

C. There is an obvious duality between confidence intervals and tests. Thus you may be
able to examine a confidence interval to decide whether or not a particular null hypothesis
will be rejected. 9.3.

D. The power of a test against a particular value of the alternative is the chance of
rejecting the null hypothesis when that particular value of the alternative happens to be the
truth. To calculate power you have to first figure out the rejection region (this will be based
on the significance level and the null distribution of the natural statistic) and then calculate
the probability of the rejection region under the particular value of the alternative. We have
discussed the rough shape of the power function of certain standard tests.

E. A test is uniformly most powerful against a composite hypothesis if for each fixed
value of the alternative it is the most powerful test of its level.

Applications. All the tests described below are likelihood ratio tests. We have covered
z and t tests for the mean of a population, and for the difference between the means of two
populations.

Note. Remember the duality between confidence intervals and tests. In the situations
below, if you can test hypotheses about a parameter then you should be able to construct
confidence intervals for the parameter.

Tests for the population mean µ. Your sample is i.i.d. from some distribution with
mean µ and variance σ2. An important special case is that of the dichotomous variable,
where µ = p and σ2 = pq. The natural statistic is the sample mean X̄ which has expectation
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µ and standard error σ/
√

n.

Large n. By the CLT, the distribution of X̄ is roughly normal no matter what the
underlying distribution of the population. Also, if σ is unknown it can be estimated by
either σ̂ or S because the two will be almost equal. The normal curve can be used to set up
rejection regions and compute approximate p-values. This is called a “one-sample z-test”.
The power of this test against a particular µ in the alternative can be be computed by using
the normal curve.

This applies also when the sample is a large SRS from a finite population, provided the
sample size is small relative to the population size. In such a case the sample is essentially
i.i.d.

Small n. Now assumptions about the underlying distribution become important.

(i) If the population distribution is normal and σ is known, then the distribution of X̄ is
normal with mean µ and standard error σ/

√
n, so the z-test works but as an exact test this

time, not an approximation.
(ii) If the population distribution is normal with an unknown σ, then (X̄ − µ)/(S/

√
n)

has the t distribution with n−1 degrees of freedom. This can be used in place of the normal
curve and is called the t-test. There is no approximation here either.

(iii) In the dichotomous case the exact distribution of the number of successes is binomial
(or hypergeometric, for simple random sampling). This can be used to get exact p-values
etc. Again, no approximation.

(iv) If the population distribution is neither normal nor dichotomous you may be able
to look at the likelihood ratio directly and come up with a rejection region. You may have
to use facts about the distribution in question, such as “sums of independent Poissons are
Poisson.”

(v) If all else fails, use the bootstrap. Resample, and use the observed distribution of
sample means instead of the normal, t, etc. All your p-values etc will most definitely be
approximations.

Tests for the difference between two population means. If you have independent
samples from the two populations, then just use the fact that X̄− Ȳ has expectation µX−µY

and standard error
√

σ2
X/nX + σ2

Y /nY .
The discussion is much as before, with the CLT etc. kicking in to make the large sample

case very easy. That is called the “two-sample z-test”. In some situations, however, there is
the new element of pooling.

(i) Large n, dichotomous case: If you are testing for the equality of two population
proportions, then you should use the natural pooled estimate of this common proportion
when you estimate standard errors under the null hypothesis.

(ii) If you have two small independent samples from normal populations with the
same unknown variance, there use the pooled estimate of the common variance, and use
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the t-test with nX + nY − 2 degrees of freedom.

The “paired” case. If you have one set of individuals and you want to compare
their mean responses to two different treatments (e.g. you want to compare the mean
pre-treatment blood-pressure and the mean post-treatment blood-pressure of patients in a
population) then your observations will be pairs (Xi, Yi) where both elements of the pair
are measurements on the same individual. So if you think of your data as two samples
X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, then the two samples will be dependent then so will X̄
and Ȳ . Therefore you can no longer use the formula σ2

X/nX + σ2
Y /nY for the variance of

X̄ − Ȳ . You have to account for the dependence. There are two main ways of doing this.

The first way is to compute the individual differences Xi − Yi (thus combining the two
samples into one), and then do a one-sample test for the mean of the differences. This SE
calculation in this method is equivalent to including the covariance term in the calculation
of V ar(X̄ − Ȳ ).

The second way of dealing with this is the sign test. This just computes the propor-
tion of positive differences Xi − Yi, and compares that to 1/2 using the binomial/normal
distributions.
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