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17 minutes in line at security at Oakland airport
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This phenomenon is easy to understand qualitatively. When a person
leaves the checkpoint, the next person moves up to the checkpoint, the
next person moves up and stops behind the now-first person, and so on,
but this “wave” of motion often does not extend through the entire long
line; instead, some person will move only a short distance, and the person
behind will decide not to move at all.

Intuitively, when you are around the k ’th position in line, there must be
some number a(k)

a(k) = average time between your moves

a(k) = average distance you move when you do move

P(W > k) = 1/a(k) for length of typical wave.

You are moving forwards at average speed 1 [unit time = service time,
unit distance = average distance between people in queue]. This
immediately suggests the question of how fast a(k) grows with k.

I will present a stochastic model in which a(k) grows as order k1/2.
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Space-time trajectories of alternate customers near the head of the queue.
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In classical queueing theory randomness enters via assumed randomness
of arrival and service times. In contrast, even though we are modeling a
literal queue, randomness in our model arises in a quite different way, via
each customer’s choice of exactly how far behind the preceding customer
they choose to stand, after each move. That is, we assume that “how far
behind” is chosen (independently for each person and time) from a given
probability density function µ on an interval [c−, c

+] where c− > 0. We
interpret this interval as a “comfort zone” for proximity to other people.
By scaling we may assume µ has mean 1, and then (excluding the
deterministic case) µ has some variance 0 < σ2 <∞.
In words, the model is

when the person in front of you moves forward to a new
position, then you move to a new position at a random distance
(chosen from distribution µ) behind them, unless their new
position is less than distance c+ in front of your existing
position, in which case you don’t move, and therefore nobody
behind you moves.
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Model could have been studied 60 years ago – but I can’t find any
closely related literature. Some traffic models loosely similar; also
TASEP.

Model as infinite queue.

You might guess process has stationary distribution with
inter-customer distances IID µ – no.

Not obvious how to start analysis.

Seem obvious that process time-converges to some unique stationary
distribution – cannot prove.

It turns out there is a non-obvious picture which explains everything
(intuitively).
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A configuration x = (0 = x0 < x1 < x2 < x3 . . .) of customer positions
can be represented by its centered counting function

F (x) := max{k : xk ≤ x} − x , 0 ≤ x <∞. (1)
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At each time t, let us consider the centered counting function Ft(x) and
plot the graph of the upward-translated function

x → G (t, x) := t + Ft(x). (2)

In other words, we draw the function starting at the point (0, t) instead
of the origin. Taking the same process realization as in the first Figure 1,
superimposing all these graphs, gives the next Figure.
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Picture shows coalescing Brownian motion (CBM).
Note trick: we switched space ↔ time.

Assuming convergence of “coded” process to CBM, how do we decode?
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Rank and position same to first order – we are studying a
second-order behavior.

Space-time trajectories become vertical in the scaling limit.

To study trajectory of individual at rank/position ≈ k there is a k1/2

scaling in the vertical direction.
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Trajectory of individual at rank/position ≈ k is

Times between moves are k1/2× intervals ti+1 − ti on left.

Distances of moves are k1/2× intervals wi+1 − wi on right.
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How to actually prove the CBM limit?

AAAARGH !

30 pages with some details missing. Markov intuition fallible because of
space ↔ time switch. Must be some simpler proof ideas . . . . . .

Step -1.
Study W = length of wave at typical time. Suppose we can prove the
desired order of magnitude

P(W > w) � w−1/2.

Then we can lean on classical “random walk →d BM” weak convergence,
together with “robustness” of CBM – initial configuration unimportant
for long-term behavior.
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Step -2.
Study configuration at large time T by looking backwards. Can split
customers into “blocks”; customers with a block all last moved at the
same time [next slide].

[delicate] can couple time-T inter-customer distances (ξi , i ≥ 1) with
IID(µ) (ξ∗i , i ≥ 1) such that

ξi = ξ∗i outside event Ai

where Ai is a “block boundary” event.

Given the upper bound P(W > w) = O(w−1/2) we have
P(Ai ) = O(i−1/2) and then from the coupling

(*) rank-k customer is at position k ± O(k1/2).

Because rank decreases by 1 each time, this shows the customer must
move during a typical O(k1/2) time interval, and this is the lower bound
P(W > w) 6= o(w−1/2).
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present time T
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Step -3. (First step). Want to prove upper bound

P(W > w) = O(w−1/2).

Given the current configuration with inter-customer distances (ξi , i ≥ 1),
the event that next-step wave has length > w is essentially the event

{
n∑

i=1

ξ∗i <

n∑
i=1

ξi ∀n < w}

for IID(µ) (ξ∗i ). So if the current (ξi , i ≥ 1) were themselves IID(µ) then
by standard RW excursion theory the probability would be � w−1/2. We
now exploit the fact that, immediately after a long wave, the
inter-customer distances are stochastically smaller than IID; this means
that the time until the next long wave will be stochastically larger than if
they were IID.

[end outline proof]
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A more sophisticated approach might be to consider CBM as a
space-indexed Markov process.

The standard CBM process (By (s), 0 ≤ s <∞, y ∈ R) with By (0) = y ,
with “time s” and “space” y , can in fact be viewed in the opposite way.
Define

Xy = (By (s)− y , 0 ≤ s <∞)

so that Xy takes values in the space C0(R+) of continuous functions f
with f (0) = 0. Now the process (Xy ,−∞ < y <∞) with “time” y is a
continuous-time C0(R+)-valued Markov process. Apparently CBM has
not been studied explicitly in this way. In principle one could determine
its generator and seek to apply general techniques for weak convergence
of discrete-time Markov chains to continuous-time limits.

Not yet tried . . . . . .
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