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When I was a Ph.D. student (1974-77) Markov Chains were a
long-established and still active topic in Applied Probability; and
Martingales were a long-established and still active topic in Theoretical
Probability. But (according to memory) there wasn’t much connection
between those topics. Maybe martingales were a potentially useful tool
for studying Markov Chains, but were they actually being used?

Here are the results of a MathSciNet search on “year = 1977” and
“anywhere = martingale and Markov chain”.
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Fast forward to 1987
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I will first talk about Aldous-Shepp (1987) and then about some recent
work.

Consider the rather trivial n + 1-state continuous-time chain (Xt) with
states 0, 1, . . . , n and transition rates

qi,i−1 = 1, 1 ≤ i ≤ n.

The hitting time T = Tn,0 from n to 0 has relative variability

var(T )/(ET )2 = 1/n.

It is natural to conjecture that this is the smallest possible value for any
hitting time of any n + 1-state continuous-time chain, and Aldous-Shepp
(1987) gave a short proof, based on the following general identity.
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Lemma

Let T be a first hitting time and write h(i) := EiT .

Then vari T = Ei

∑
s≤T (h(Xs)− h(Xs−))2 = Ei

∫ T

0
a(Xt) dt

where a(i) :=
∑

j qij (h(i)− h(j))2.

Now w.l.o.g. label states as 0, 1, . . . , n, consider the hitting time on state
0, and re-order so that 0 = h(0) < h(1) ≤ h(2) ≤ . . . ≤ h(n). Easy to see
that for any path i0, i1, . . . from m to 0 we have∑

u

(h(iu)− h(iu−1))2 ≥
m∑
i=1

(h(i)− h(i − 1))2.

So

varmT0 ≥
m∑
i=1

(h(i)− h(i − 1))2 (first equality in Lemma)

≥ m−1

(
m∑
i=1

(h(i)− h(i − 1))

)2

(Cauchy-Schwarz)

≥ m−1h2(m) ≥ n−1(EmT0)2.
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This result is mentioned in treatments of “phase-type” distributions but
neither Larry nor I pursued the topic further.

The “theory” way to understand the lemma is that t → E(T |Xs , s ≤ t)
must be a martingale, and in fact it is

Mt := E(T |Xs , s ≤ t) = h(Xt∧T ) + t ∧ T (1)

for h(i) := EiT . Next, M2
t has a Doob-Meyer decomposition into a

martingale Qt and a predictable process, and the decomposition is

M2
t −M2

0 = Qt +

∫ t

0

a(Xs)ds, t ≤ T

for
a(i) :=

∑
j

qij (h(i)− h(j))2.

From these ingredients and optional sampling we get a pair of general
identities.
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Lemma

Let T be a first hitting time within a continuous-time chain, and

h(i) := EiT .

Then

EiT = Ei

∫ T

0

b(Xt) dt, vari T = Ei

∫ T

0

a(Xt) dt

where
a(i) :=

∑
j

qij (h(i)− h(j))2

b(i) :=
∑
j

qij(h(i)− h(j)).

These are curiously hard to find in Applied Probability textbooks, and
indeed are not helpful for explicit calculations in a specific model.
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As background to my second topic, recall the method of bounded
differences; for a RV Z of the form

Z = f (ξ1, . . . ξn); for independent (ξi )

where f has the property

|f (x)− f (x′)| ≤ 1 whenever x, x′ differ in only one coordinate

we have
P(|Z − EZ | ≥ λn1/2) ≤ 2 exp(−λ2/2).

Basic example of a general concentration inequality – a key point is
that one can bound a difference |Z −EZ | even when you don’t know EZ .

I will describe a rather different CI, which holds for Markov chains with a
special property.
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Consider a finite-state continuous-time Markov chain and a hitting time
T = TA on some subset A of states, and suppose

h(i) := EiT <∞ ∀i .

Neither “finite” nor “continuous” is actually important here. What is
important is the next assumption:

h(j) ≤ h(i) for each possible transition i → j . (2)

This is a very restrictive assumption – not obvious that any “interesting”
chain satisfies this assumption.

Proposition

Under condition (2), for any initial state,

var T

ET
≤ max{h(i)− h(j) : i → j a possible transition}.
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We can rewrite this as

κ := max{h(i)− h(j) : i → j a possible transition}

s.d.(T )

ET
≤
√

κ

ET
where the right side is always ≤ 1. So we get a weak concentration
inequality if κ/ET is small.

The Proposition is an immediate corollary of the previous lemma [show]
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Are there any interesting chains where our “strong monotonicity”
condition holds?

Our applications are all in the context of chains (Zt) whose states are
subsets S of a given discrete space and whose transitions are of the form
S → S ∪ {v}. In words “increasing set-valued processes”.

And our applications use hitting times T of the form

T := inf{t : Zt ⊇ B for some B ∈ B}

for a specified collection B of subsets B.

In applications we bound
κ := max{h(i)− h(j) : i → j a possible transition} by using some
natural coupling of the processes started from i and from j .

The rest of the talk is 3 examples which fit this context. The first two
are straightforward to implement.
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Example 1: a general growth process (Zt) on the lattice Z2.
The states are finite vertex-sets S , the possible transitions are
S → S ∪ {v} where v is a vertex adjacent to S . For each such transition,
we assume the transition rates are bounded above and below:

0 < c∗ ≤ q(S ,S ∪ {v}) ≤ c∗ <∞. (3)

Initially Z0 = {0}, where 0 denotes the origin. The “monotonicity”
condition we impose is that these rates are increasing in S :

if v , v ′ are adjacent to S then q(S ,S ∪ {v}) ≤ q(S ∪ {v ′},S ∪ {v , v ′}) .
(4)

Note that we do not assume any kind of spatial homogeneity.

Proposition

Let B be an arbitrary subset of vertices Z2 \ {0}, and consider
T := inf{t : Zt ∩ B is non-empty.}. Under assumptions (3, 4),

var T ≤ ET/c∗.

David Aldous On Martingales, Markov Chains and Concentration



Proof. Condition (4) allows us to couple versions (Z ′t ,Z
′′
t ) of the process

starting from states S ′ ⊂ S ′′, such that in the coupled process we have
Z ′t ⊆ Z ′′t for all t ≥ 0. In particular, h(S) := EST satisfies the
monotonicity condition (2). To deduce the result from Lemma 1 we need
to show that, for any given possible transition S0 → S0 ∪ {v0}, we have

h(S0) ≤ h(S0 ∪ {v0}) + 1/c∗. (5)

Now by running the process started at S0 until the first time T ∗ this
process contain v0, and then coupling the future of that process to the
process started at S0 ∪ {v0}, we have h(S0) ≤ ES0T

∗ + h(S0 ∪ {v0}).
And ES0T

∗ ≤ 1/c∗ by (3), establishing (5).
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Two recent arXiv posts deal with specific models of such
non-homogeneous growth processes.

Asymptotic behavior of the Eden model with positively homogeneous
edge weights by Bubeck and Gwynne

Nucleation and growth in two dimensions by Bollobas et al.
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Example 2: A multigraph process
(This is one aspect of broad study in Aldous-Li (2018) A Framework for
Imperfectly Observed Networks).

Take a network – a finite connected graph (V,E) with edge-weights
w = (we), where we > 0 ∀e ∈ E.

Define a multigraph-valued process as follows. Initially we have the
vertex-set V and no edges. For each vertex-pair e = (vy) ∈ E, edges vy
appear at the times of a Poisson (rate we) process, independent over
e ∈ E.

So at time t the state of the process, Zt say, is a multigraph with
Ne(t) ≥ 0 copies of edge e, where (Ne(t), e ∈ E) are independent
Poisson(twe) random variables.
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Background motivation: model of imperfectly observed network. How
well can we estimate some aspect of the true network from observed
multigraph?

Leads to a huge range of questions; one basic issue is to say something
about connectivity properties of true network. This must relate to
connectivity properties of the observed multigraph.
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We study how long until Zt has various connectivity properties.
Specifically, consider

T ′k = inf{t : Zt is k-edge-connected}
Tk = inf{t : Zt contains k edge-disjoint spanning trees.}

Here we regard the Ne(t) copies of e as disjoint edges. Remarkably,
Lemma 1 enables us to give a simple proof of a “weak concentration”
bound which does not depend on the underlying weighted graph.

Proposition

s.d.(Tk)

ETk
≤ 1√

k
, k ≥ 1.

Via a continuization device, the same bound holds in the discrete-time
model where edges e arrive IID with probabilities proportional to we .

We conjecture that some similar result holds for T ′k . But proving this by
our methods would require some structure theory (beyond Menger’s
theorem) for k-edge-connected graphs, and it is not clear whether
relevant theory is known.
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Proof. Here the states S are multigraphs over V, and h(S) is the
expectation, starting at S , of the time until the process contains k
edge-disjoint spanning trees. Monotonicity property is clear. What are
the possible values of h(S)− h(S ∪ {e}), where S ∪ {e} denotes the
result of adding an extra copy of e to the multigraph S?

Consider the “min-cut” over proper subsets S ⊂ V

γ := min
S

w(S ,Sc)

where w(S ,Sc) =
∑

v∈S,y∈Sc wvy . Because a spanning tree must have at
least one edge across the min-cut,

ETk ≥ k/γ. (6)

On the other hand we claim

h(S)− h(S ∪ {e}) ≤ 1/γ.

Given this, Lemma 1 establishes the proposition.
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Claim : h(S)− h(S ∪ {e}) ≤ 1/γ.

To prove this, take the natural coupling (Zt ,Z
+
t ) of the processes started

from S and from S ∪ {e}, and run the coupled process until Z+
t contains

k edge-disjoint spanning trees. At this time, the process Zt either
contains k edge-disjoint spanning trees, or else contains k − 1 spanning
trees plus two trees (regard as edge-sets t1 and t2) such that
t1 ∪ t2 ∪ {e} is a spanning tree. So the extra time we need to run (Zt) is
at most the time until some arriving edge links t1 and t2, which has
mean at most 1/γ. This establishes the Claim.
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Perhaps the most interesting example – from The Incipient Giant
Component in Bond Percolation . . . (2016).

Example 3: Bond percolation on a general network.

An edge e of weight we becomes open at an Exponential(we)
random time.

In this process we can consider

C (t) = max size (number of vertices) in a connected
component of open edges at time t.

And consider “emergence of the giant component”. Studied
extensively on many non-random and specific models of random
networks. Can we say anything about (almost) arbitrary networks?

Traditional setting: number of vertices n→∞ asymptotics.
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Suppose (after time-scaling) there exist constants δ > 0,K <∞ such
that

lim
n

ECn(δ)/n = 0; lim
n

ECn(K )/n > 0. (7)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) at some random time of order 1.

Proposition

Given a sequence of networks satisfying (1), there exist constants
τn ∈ [δ,K ] such that, for every sequence εn ↓ 0 sufficiently slowly, the
random times

Tn := inf{t : Cn(t) ≥ εnn}

satisfy
Tn − τn →p 0.

The Proposition asserts, informally, that the “incipient” time at which
the giant component starts to emerge is deterministic to first order.
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The proof of the Proposition is more complicated (we need to allow rare
“bad” transitions) and less explicit (use a compactness argument) – but
only 2-3 pages. See The Incipient Giant Component in Bond Percolation
. . . (2016),

Why care about this kind of result?
Bond percolation can be re-interpreted as the SI epidemic. The
Proposition can be re-interpreted as saying that, in the SI epidemic on an
arbitrary network with an ”infectiousness” parameter λ, there is always a
critical value λcrit such that, starting with Ω(1) but o(n) infectives,
(λ < λcrit): w.h.p. o(n) ever infected
(λ > λcrit): w.h.p. Ω(n) ever infected.

Would like to extend to more realistic SIR models, but needs different
arguments.
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Just for fun, a math example;
Take vertices as integers 1, 2, 3, . . . ,N and edge-weights

wij = g.c.d.(i , j)

with normalization 1/(N logN). Here are 6 realizations of CN(·) for
N = 72, 000.
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