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When | was a Ph.D. student (1974-77) Markov Chains were a
long-established and still active topic in Applied Probability; and
Martingales were a long-established and still active topic in Theoretical
Probability. But (according to memory) there wasn't much connection
between those topics. Maybe martingales were a potentially useful tool
for studying Markov Chains, but were they actually being used?

Here are the results of a MathSciNet search on “year = 1977" and
“anywhere = martingale and Markov chain”.
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Publications results for "(Anywhere=(Markov chain) AND Anywhere=(martingale) AND Publication Type=(Journals)) AND pubyear=1977 "

3 (58 #2978) Revi d Citations
Bolthausen, E. ) o ) - ) From References: 0
On rates of convergence in a random central limit theorem and in the central limit theorem for Markov chains. Erom Reviews: 1

Z.Wahrscheinlichkeitstheorie und Verw. Gebiete 38 (1977), no. 4, 279-286.
60F05 (60J10)
- UC-eLinks

Let {X,,n = 0,1, ---} be a positive recurrent irreducible Markov chain with countable state space /, and assume that a map ¢:/ — R (reals) is
given. Fix a state a € I and define 7 := inf{n > 1: X, = a} and ¢. := Y;_, ¢(X,). Using renewal theory, optional stopping results for
martingales and some well-known Berry-Esseen type results for i.i.d. summands, it is proved, given specified constants x4 and o,

Fu(0) := Po(Y ¢(Xk) — npt < no1) and @ the standard normal distribution, that E,|7|** < co and Ea|¢:|° < oo for some ¢ > 3 imply

Iy — ®|| = o(r™"**?)  for alls > 1/(6(c + 1)).
Reviewed by Roy. V. Erickson
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Fast forward to 1987
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« [ Stochastic Process. Appl.
1

Year

o 71987
@)

MR0943579 Reviewed Aalen, Odd O. Dynamic modelling and causality. Scand. Actuar. J. 1987, no. 3-4, 177-190. 62P10 (60G44 62M10
62P05)
. UC-eLinks

MR0926552 Reviewed Moore, Marc Inférence statistique dans les processus stochastiques: apergu historique. (French) [Statistical
inference in stochastic processes: a historical overview] Canad. J. Statist. 15 (1987), no. 3, 185-207. (Reviewer: W. A. O'N. Waugh) 62-02
(01A60 60-02 62M99)

. UC-eLinks

3(1987), no. 3, 467-473. 60J27 (90B22)
. UC-eLinks

MRO0917251 Reviewed Bierth, K.-J. An expected average reward criterion. Stochastic Process. Appl. 26 (1987), no. 1, 123—140. (Reviewer:

Uriel G. Rothblum) 90C39 (90C40)
. UC-eLinks

MR0900114 Reviewed Sonin, I. M. A theorem on separation of jets and some properties of random sequences. Stochastics 21 (1987), no.
3, 231-249. (Reviewer: Robert Kertz) 60J10 (60F99 60G44)

. UC-eLinks

MRO0889799 Reviewed Fayolle, Guy; lasnogorodski, Rudolph Criteria for the nonergodicity of stochastic processes: application to the

- UC-eLinks

MRO0877725 Reviewed Rosenkrantz, Walter A. Approximate counting: a martingale approach. Stochastics 20 (1987), no. 2, 111-120.
(Reviewer: S. Csibi) 68R99 (60G42 68Q25)
_ UC-eLinks
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| will first talk about Aldous-Shepp (1987) and then about some recent
work.

Consider the rather trivial n+ 1-state continuous-time chain (X;) with
states 0,1,..., n and transition rates

qii—1 = 1, 1 S i S n.
The hitting time T = T, from n to 0 has relative variability
var(T)/(ET)? = 1/n.

It is natural to conjecture that this is the smallest possible value for any
hitting time of any n + 1-state continuous-time chain, and Aldous-Shepp
(1987) gave a short proof, based on the following general identity.
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Let T be a first hitting time and write h(i) :=E;T .
Then var; T =E; Y, 7(h(Xs) — h(Xs_))? = E; [ a(X:) dt
where a(i) :=>_; q;; (h(i) — h(j))>.

Now w.l.o.g. label states as 0,1, ..., n, consider the hitting time on state
0, and re-order so that 0 = h(0) < h(1) < h(2) < ... < h(n). Easy to see
that for any path ig, i1,... from m to O we have

> (hiw) = h(iu—1))* = > _(h(i) = h(i = 1))*.
i=1

u

So
var, To > Em:(h(i)—h(i—l))z (first equality in Lemma)
! m 2
> mt Z(h(i)—h(i—l))) (Cauchy-Schwarz)
> m*lhz’:ql)znfl(EmTo)?
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This result is mentioned in treatments of “phase-type” distributions but
neither Larry nor | pursued the topic further.

The “theory” way to understand the lemma is that t — E(T|Xs,s < t)
must be a martingale, and in fact it is

My :=TE(T|Xs,s < t) = h(Xear) + tA T (1)

for h(i) := E; T. Next, M? has a Doob-Meyer decomposition into a
martingale Q; and a predictable process, and the decomposition is

t
Mf—M@zQﬁ-/ a(X)ds, t< T
0

for

a(i) = un (h(i) = h())).

From these ingredients and optional sampling we get a pair of general
identities.
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Let T be a first hitting time within a continuous-time chain, and

h(i) :==E;T.

Then - T
E, T = E,/ b(Xt) dt, var; T = E,/ a(Xt) dt
0 0

where

a(i) = Z g5 (h(i) = h(}))?

b(i) = Z qij(h(7) = h(j))-

These are curiously hard to find in Applied Probability textbooks, and
indeed are not helpful for explicit calculations in a specific model.
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As background to my second topic, recall the method of bounded
differences; for a RV Z of the form

Z=1f(&,...&n); for independent (&;)
where f has the property
|f(x) — f(x')| <1 whenever x, x’ differ in only one coordinate

we have
P(|Z —EZ| > An*/?) < 2exp(—)?/2).

Basic example of a general concentration inequality — a key point is
that one can bound a difference |Z —EZ| even when you don't know EZ.

| will describe a rather different Cl, which holds for Markov chains with a
special property.
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Consider a finite-state continuous-time Markov chain and a hitting time
T = Ta on some subset A of states, and suppose

h(i) = E:T < oo Vi.

Neither “finite” nor “continuous” is actually important here. What is
important is the next assumption:

h(j) < h(i) for each possible transition i — ;. (2)

This is a very restrictive assumption — not obvious that any “interesting”
chain satisfies this assumption.

Proposition

Under condition (2), for any initial state,

var T
ET

< max{h(i) — h(j) : i — j a possible transition}.
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We can rewrite this as

k :=max{h(i) — h(j) : i — j a possible transition}

s.d.(T) < R
ET —VET

where the right side is always < 1. So we get a weak concentration
inequality if k/ET is small.

The Proposition is an immediate corollary of the previous lemma [show]
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Are there any interesting chains where our “strong monotonicity”
condition holds?

Our applications are all in the context of chains (Z;) whose states are
subsets S of a given discrete space and whose transitions are of the form
S — SU{v}. In words “increasing set-valued processes”.

And our applications use hitting times T of the form
T :=inf{t: Z; O B for some B € B}

for a specified collection B of subsets B.

In applications we bound
k:=max{h(i) — h(j): i — j a possible transition} by using some
natural coupling of the processes started from 7 and from j.

The rest of the talk is 3 examples which fit this context. The first two
are straightforward to implement.
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Example 1: a general growth process (Z;) on the lattice Z2.

The states are finite vertex-sets S, the possible transitions are

S — SU{v} where v is a vertex adjacent to S. For each such transition,
we assume the transition rates are bounded above and below:

0<c <q(S,SU{v})<c" <. (3)

Initially Zo = {0}, where 0 denotes the origin. The “monotonicity”
condition we impose is that these rates are increasing in S:

if v, v’ are adjacent to S then q(S,SU{v}) < qg(SU{Vv'},SU{v,v'}).
(4)

Note that we do not assume any kind of spatial homogeneity.

Proposition

Let B be an arbitrary subset of vertices 72 \ {0}, and consider
T :=inf{t : Z, N B is non-empty.}. Under assumptions (3, 4),

var T <ET/c,.
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Proof. Condition (4) allows us to couple versions (Z}, Z]') of the process
starting from states S’ C S”, such that in the coupled process we have
Z, C Z] for all t > 0. In particular, h(S) := Eg T satisfies the
monotonicity condition (2). To deduce the result from Lemma 1 we need
to show that, for any given possible transition Sp — Sp U {vp}, we have

h(So) < h(SoU{w}) + 1/c.. (5)

Now by running the process started at Sy until the first time T* this
process contain vy, and then coupling the future of that process to the
process started at So U {vp}, we have h(Sp) < Eg, T* + h(So U {w}).
And Eg, T* < 1/c, by (3), establishing (5).
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Two recent arXiv posts deal with specific models of such
non-homogeneous growth processes.

Asymptotic behavior of the Eden model with positively homogeneous
edge weights by Bubeck and Gwynne

Nucleation and growth in two dimensions by Bollobas et al.
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Example 2: A multigraph process
(This is one aspect of broad study in Aldous-Li (2018) A Framework for
Imperfectly Observed Networks).

Take a network — a finite connected graph (V, E) with edge-weights
w = (w,.), where w, > 0 Ve € E.

Define a multigraph-valued process as follows. Initially we have the
vertex-set V and no edges. For each vertex-pair e = (vy) € E, edges vy
appear at the times of a Poisson (rate w,) process, independent over
ecE.

So at time t the state of the process, Z; say, is a multigraph with
Ne(t) > 0 copies of edge e, where (Ne(t), e € E) are independent
Poisson(tw,) random variables.
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Background motivation: model of imperfectly observed network. How
well can we estimate some aspect of the true network from observed
multigraph?

Leads to a huge range of questions; one basic issue is to say something
about connectivity properties of true network. This must relate to
connectivity properties of the observed multigraph.
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We study how long until Z; has various connectivity properties.
Specifically, consider

o T/ =inf{t: Z; is k-edge-connected}
o T, =inf{t: Z; contains k edge-disjoint spanning trees.}

Here we regard the N.(t) copies of e as disjoint edges. Remarkably,
Lemma 1 enables us to give a simple proof of a “weak concentration”
bound which does not depend on the underlying weighted graph.

Proposition

S.d.(Tk) 1
ET, — \/;

Via a continuization device, the same bound holds in the discrete-time
model where edges e arrive [ID with probabilities proportional to w.

We conjecture that some similar result holds for T;. But proving this by
our methods would require some structure theory (beyond Menger's
theorem) for k-edge-connected graphs, and it is not clear whether
relevant theory is known.
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Proof. Here the states S are multigraphs over V, and h(S) is the
expectation, starting at S, of the time until the process contains k
edge-disjoint spanning trees. Monotonicity property is clear. What are
the possible values of h(S) — h(S U {e}), where S U {e} denotes the
result of adding an extra copy of e to the multigraph S?

Consider the “min-cut” over proper subsets S C V
= msin w(S, S°)

where w(S,5°) = ZVGS,yE_SC w,y. Because a spanning tree must have at
least one edge across the min-cut,

ETk > k/~. (6)
On the other hand we claim
h(S)—h(SU{e}) <1/4.

Given this, Lemma 1 establishes the proposition.
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Claim : h(S) = h(SU{e}) <1/4.

To prove this, take the natural coupling (Z;, Z;") of the processes started
from S and from S U {e}, and run the coupled process until Z," contains
k edge-disjoint spanning trees. At this time, the process Z; either
contains k edge-disjoint spanning trees, or else contains kK — 1 spanning
trees plus two trees (regard as edge-sets t; and t;) such that

t; Uty U {e} is a spanning tree. So the extra time we need to run (Z;) is
at most the time until some arriving edge links t; and t,, which has
mean at most 1/+. This establishes the Claim.
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Perhaps the most interesting example — from The Incipient Giant
Component in Bond Percolation ... (2016).

Example 3: Bond percolation on a general network.

An edge e of weight we becomes open at an Exponential(w,)
random time.

In this process we can consider

C(t) = max size (number of vertices) in a connected
component of open edges at time t.

And consider “emergence of the giant component”. Studied
extensively on many non-random and specific models of random
networks. Can we say anything about (almost) arbitrary networks?

Traditional setting: number of vertices n — oo asymptotics.
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Suppose (after time-scaling) there exist constants 6 > 0, K < oo such
that
ImEC,(6)/n=0; ImEC,(K)/n> 0. (7)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) at some random time of order 1.

Proposition

Given a sequence of networks satisfying (1), there exist constants
Tn € [0, K] such that, for every sequence e, | 0 sufficiently slowly, the
random times

T, = inf{t: C,(t) > enn}

satisfy

o — T —p 0t

The Proposition asserts, informally, that the “incipient” time at which
the giant component starts to emerge is deterministic to first order.
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The proof of the Proposition is more complicated (we need to allow rare

“bad” transitions) and less explicit (use a compactness argument) — but

only 2-3 pages. See The Incipient Giant Component in Bond Percolation
. (2016),

Why care about this kind of result?

Bond percolation can be re-interpreted as the Sl epidemic. The
Proposition can be re-interpreted as saying that, in the S| epidemic on an
arbitrary network with an "infectiousness” parameter A, there is always a
critical value A such that, starting with Q(1) but o(n) infectives,

(A < Arit): w.h.p. o(n) ever infected

(A > Acrit): w.h.p. Q(n) ever infected.

Would like to extend to more realistic SIR models, but needs different
arguments.
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Just for fun, a math example;
Take vertices as integers 1,2,3,..., N and edge-weights

w; = g.c.d.(i,))

with normalization 1/(Nlog N). Here are 6 realizations of Cy(-) for
N = 72,000.

3000

2500
2000

1500

1000
4
500 j
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