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Topic 1: Should you do the back-of-an-envelope calculation before
the multi-million dollar project?

Non-transitive dice are a “paradox” in the sense that one might just
assume such things are impossible without thinking about it. I’ll talk
about another such paradox.

Background analogy: in a sports match the better team doesn’t always
win, but is likely to win. So in a sports tournament the probabilities of
different final winners should be ordered as the abilities of the different
teams.

Let’s briefly say a math model to check this (details not important). In
the Bradley-Terry model

P(A beats B) = F (xA − xB), x = ability, F = logistic.

Make a probability model of random abilities, with a parameter
controlling variability of abilities, and simulate a 16 team
single-elimination tournament.
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Figure: Probabilities of different-ranked players winning the tournament,
compared with probability that rank-1 player beats rank-2 player (top curve).

Here math is consistent with common sense.
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In a prediction tournament contestants state probabilities of future
geopolitical events. Here are 5 out of 80 questions asked currently on
gjopen.com.

• Will an armed group from South Sudan engage in a campaign that
systematically kills 1,000 or more civilians during 2019?
• Will there be a lethal confrontation in the South or East China Sea
between the military forces, militia, or law enforcement personnel of
China and another country before 1 January 2020?
• Before 1 October 2019, will the U.S. House of Representatives pass an
article of impeachment against President Trump?
• Will North Korea launch an intercontinental ballistic missile (ICBM)
before 1 January 2020?
• Between 22 February and 31 December 2019, will more than one
CRISPR gene-edited baby be born?
• Before 31 December 2019, will Fitch, Moody’s, or S&P downgrade the
United Kingdom’s long-term local or foreign currency issuer ratings?
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DARPA has a shyer cousin IARPA – non-classified research of indirect
interest to the Intelligence community. They funded a series of Good
Judgment Projects in which volunteers (including me) as individuals
and teams make forecasts for such questions.

The point is to gather evidence and expert opinions before giving an
answer – and (unlike an exam) there are no limitations – you can copy
other people’s answers, or if you happen to be a personal friend of
Vladimir Putin . . . . . .

Important: contestants are not asked to give a Yes/No prediction, but
instead are asked to give a numerical probability, and to update as time
passes and relevant news/analysis appears.
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Call for one 2018 contest

IARPA is looking for approaches from non-traditional sources that would
improve the accuracy and timeliness of geopolitical forecasts. IARPA
hosts these challenges in order to identify ways that individuals, academia,
and others with a passion for forecasting can showcase their skills easily.

Why Should You Participate: This challenge gives you a chance to
join a community of leading experts to advance your research, contribute
to global security and humanitarian activities, and compete for cash
prizes. This is your chance to test your forecasting skills and prove
yourself against the state-of-the-art, and to demonstrate your superiority
over political pundits. By participating, you may:

Network with collaborators and experts to advance your research

Gain recognition for your work and your methods

Test your method against state-of-the-art methods

Win prizes from a total prize purse of $200,000
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Why are millions of taxpayer dollars being spent running such projects?

What makes some individuals better than others? The study starts
with a lengthy test of “cognitive style” to see what correlates.

What makes some teams better than others? How to combine
different sources of uncertain information/analysis is a major issue
Intelligence assessment. The project managers see team discussions.

How can we assess someone’s ability? We do what Carl Friedrich Gauss
said 200 years ago – use mean square error MSE. An event is a 0 - 1
variable; if we predict 70% probability then our “squared error” is
(if event happens) (1.0− 0.70)2 = 0.09
(if event doesn’t happen) (0.0− 0.70)2 = 0.49

As in golf, you are trying to get a low score. A prediction tournament is
like a golf tournament where no-one knows “par”. That is, you can
assess people’s relative abilities, but you cannot assess absolute abilities.
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Writing S for your “tournament score” when the true probabilities of the
n events are (pi , 1 ≤ i ≤ n) and you predict (qi , 1 ≤ i ≤ n),

ES =
∑

i

pi (1− pi ) + nσ2 (1)

where
σ2 := n−1

∑

i

(qi − pi )
2

is your MSE (mean squared error) in assessing the probabilities.
So for contestants A and B

n−1E(SA − SB) = σ2
A − σ2

B

and so in the long run we can tell who is the more accurate forecaster.

This has philosophical interest, best discussed over beer.
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Here is a histogram of 2×scores of individuals in the 2013-14 season GJP

challenge. The season scores were based on 144 questions, and a
back-of-an-envelope calculation gives the MSE due to intrinsic
randomness of outcomes as around 0.02, which is much smaller than the
spread observed in the histogram. The key conclusion is that there is
wide variability between players – as in golf, some people are just much
better than others at forecasting these geopolitical events.
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In the long run we could tell who is the more accurate forecaster, but
what about chance variation in realistic-size tournaments? We need a
model for comparing contestants scores.

100 questions

true probabilities (unknown to contestants) uniformly spread from
5% to 95%.

For each contestant A there is a RMS error σA for their predicted
probabilities: that is, in the model, for each event the prediction
ppredicted by A is random and such that

σ2
A = E(ppredicted − ptrue)2.

(complete model specification discussed later)

Now we can simulate the tournament.
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Figure: One-on-one comparison: Chance of more accurate forecaster beating
less accurate forecaster in 100-question tournament.

RMS error (less accurate)
0.05 0.1 0.15 0.2 0.25 0.3

0 0.73 0.87 0.95 0.99 1.00 1.00
RMS 0.05 0.77 0.92 0.97 0.99 1.00
error 0.1 0.78 0.92 0.97 0.99

(more 0.15 0.76 0.92 0.97
(accurate) 0.2 0.76 0.91

0.25 0.73

So this is quite similar to Bradley-Terry: use the RMS
probability-prediction error as “ability”, and roughly

P(A beats B in prediction tournament ) ≈ F (σA − σB)

for some function F
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A leader in this field is Philip Tetlock, with a popular book
Superforecasting and a 2017 Science article and a 2015 paper Identifying
and cultivating superforecasters as a method of improving probabilistic
predictions. They write

[the winning strategy for teams over several successive
tournaments was] culling off top performers each year and
assigning them into elite teams of superforecasters. Defying
expectations of regression toward the mean 2 years in a row,
superforecasters maintained high accuracy across hundreds of
questions and a wide array of topics.

Of course this is essentially the same way that professional football
players – or mathematics professors – are developed.

But let’s check this holds up mathematically in our prediction context.
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Recall “ability” of contestant formalized as RMS error σ in predicting
probability. For a tournament model we need a model for variability of
ability over contestants:

300 contestants

σ varies evenly from 0 to 0.3.

So we can rank contestants from 1 to 300 in terms of ability. For a
tournament with a million events, by LLN the order of scores would
closely match the ranking of ability. But what about a realistic size
tournament with 100 events?

Specifically, what is the (ability) rank of the tournament winner?

Here is the first simulation I did.
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Maybe something wrong with my amateur Python code?
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Maybe no-one is near-perfect in predicting probabilities? Here are results
if the abilities (RMS errors) σ range over [0.1, 0.4] instead of [0, 0.3]

This is partly in line with common sense – the best forecasters are
relatively more likely to win – but still the winner is liable to be around
the 50th best contestant.
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So that’s the paradox – according to this model, tournaments are a
surprisingly ineffective way of identifying the best forecasters, even
though IARPA is spending millions of dollars doing precisely this.

Now the issues are

Is there a calculation to qualitatively explain these simulation model
results?

Why are our model results very different from what is claimed for
real tournament results?
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The back-of-envelope calculation
Consider a 100-question tournament in which the true probabilities are all
0.5. What are the scores S?

A perfectly accurate forecaster: S = 25.0.

A contestant who predicts 0.4 or 0.6 randomly on each question:
ES = 26.0, s.d.(S) = 0.98.

A contestant who predicts 0.3 or 0.7 randomly on each question:
ES = 29.0, s.d.(S) = 1.83.

Moreover, as a special feature of the “all true probabilities are 0.5”
setting, different contestants’ scores are independent. In our simulated
setting of 300 contestants, some scores will by chance be around 3 s.d.’s
below expectation. With RMS prediction errors ranging from 0 to 0.3, we
expect a winning score around 23 and we will not be surprised if this
comes from the 100th or 200th best forecaster.
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Why is this happening? The key point is that for predicting probabilities
the expected cost of small errors scales as (error)2 while the s.d. scales as
(error). This is quite different from a typical sport – golf or basketball –
where the winner is decided by point difference, points earned in some
success/failure way. In sports the expected point difference scales as
(difference in ability) and the s.d. of score is roughly constant.
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A superficial conclusion of our results is that winning a prediction
tournament is strong evidence of superior ability only when the better
forecasters’ predictions are not reliably close to the true probabilities. But
are our models realistic enough to be meaningful? Two features of our
model are unrealistic. One is that contestants have no systematic bias
towards too-high or too-low forecasts. But alternate models allowing that
give roughly similar results.

I guess the most serious issue is that the errors are assumed independent
over both questions and contestants. In reality, if all contestants are
making judgments on the same evidence, then (to the extent that
relevant evidence is incompletely known) there is surely a tendency for
most contestants to be biased in the same direction on any given
question. Implicit in our model is that, in a large tournament, this
“independence of errors” assumption means that different contestants
will explore somewhat uniformly over the space of possible prediction
sequences close to the true probabilities, whereas in reality one imagines
the deviations would be highly non-uniform.
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Statistical analysis of real tournament data is too complicated (for me).
But here are 2 data points.

[start next simulation]
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I tell students: keep your eyes open for phenomena that you might model
stochastically.

Here’s an example that led to a plausible explanation of observations,
and some cute math.

Topic 2: Stop-and-Go at Airport Security
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17 minutes in line at security at Oakland airport
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distance from front of queue

time
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This phenomenon is easy to understand qualitatively. When a person
leaves the checkpoint, the next person moves up to the checkpoint, the
next person moves up and stops behind the now-first person, and so on,
but this “wave” of motion often does not extend through the entire long
line; instead, some person will move only a short distance, and the person
behind will decide not to move at all.

Intuitively, when you are around the k ’th position in line, there must be
some number a(k)

a(k) = average time between your moves

a(k) = average distance you move when you do move

P(W > k) = 1/a(k) for length of typical wave.

You are moving forwards at average speed 1 [unit time = service time,
unit distance = average distance between people in queue]. This
immediately suggests the question of how fast a(k) grows with k.

I will present a stochastic model in which a(k) grows as order k1/2.
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In classical queueing theory randomness enters via assumed randomness
of arrival and service times. In contrast, even though we are modeling a
literal queue, randomness in our model arises in a quite different way, via
each customer’s choice of exactly how far behind the preceding customer
they choose to stand, after each move. That is, we assume that “how far
behind” is chosen (independently for each person and time) from a given
probability density function µ on an interval [c−, c

+] where c− > 0. We
interpret this interval as a “comfort zone” for proximity to other people.
By scaling we may assume µ has mean 1, and then (excluding the
deterministic case) µ has some variance 0 < σ2 <∞.
In words, the model is

when the person in front of you moves forward to a new
position, then you move to a new position at a random distance
(chosen from distribution µ) behind them, unless their new
position is less than distance c+ in front of your existing
position, in which case you don’t move, and therefore nobody
behind you moves.
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Model could have been studied 60 years ago – but I can’t find any
closely related literature. Some traffic models loosely similar; also
TASEP.

Model as infinite queue.

You might guess process has stationary distribution with
inter-customer distances IID µ – no.

Not obvious how to start analysis.

Seem obvious that process time-converges to some unique stationary
distribution – cannot prove.

It turns out there is a non-obvious picture which explains (intuitively) the
k1/2 scaling in this model.
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A configuration x = (0 = x0 < x1 < x2 < x3 . . .) of customer positions
can be represented by its centered counting function

F (x) := max{k : xk ≤ x} − x , 0 ≤ x <∞. (2)

position x
2 4 6 8 10

0

1

-1

At each time t, let us consider the centered counting function Ft(x) and
plot the graph of the upward-translated function

x → G (t, x) := t + Ft(x). (3)

In other words, we draw the function starting at the point (0, t) instead
of the origin. Taking the same process realization as in the first Figure 1,
superimposing all these graphs, gives the next Figure.
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time t

0
1
2
3
4
5
6
7
8
9
10
11

position x
0 2 4 6 8 10

Why does this explain everything?
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Picture shows coalescing Brownian motion (CBM) which is well
understood; density of particles at time t scales as t−1/2. But note trick:
we switched space ↔ time.

Assuming convergence of “coded” process to CBM, we can easily decode
(details omitted) to get claimed “waves” result for the queue model.
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How to actually prove the CBM limit?

AAAARGH !

30 pages with some details missing. Markov intuition fallible because of
space ↔ time switch. Must be some simpler proof ideas . . . . . .

Step -1.
Study W = length of wave at typical time. Suppose we can prove the
desired order of magnitude

P(W > w) � w−1/2.

Then we can lean on classical “random walk →d BM” weak convergence,
together with “robustness” of CBM – initial configuration unimportant
for long-term behavior.
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Topic 3: The shape of things to come?

In my “real world” context I describe typical math probability models
(like the SIRSN) as “fantasy” – unconnected to any real data. But now
I’ll tell you an even more extreme fantasy – which will lead to an
elementary-to-state math problem.
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Imagine that somewhere there’s an eccentric multi-billionaire with a taste
for dramatic projects

and imagine there’s a large spread-out metropolitan region without good
public transport but with bad road traffic.

And then the billionaire has an idea . . . . . .
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Where should one put a hypothetical such network?

Background. Wikipedia – rapid transit shows typical topologies (shapes)
for subway-type networks.

An interesting problem – see Aldous-Barthelemy (2019) but not discussed
today – is can we reproduce these as optimal under some slightly-realistic
toy model?

Musk’s hypothetical tunnel network suggests an extreme model: “infinite
speed, no wait time, no discrete stations”.
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Problem (a) Find the connected network of length L that minimizes the
expected distance from a random start to the closest point on the
network.

This depends on the density ρ of starting point; as default take
2-dimensional standard Normal.

This model implies constant speed outside the network, infinite speed
within the network, but one is forced to use the network. Slightly more
realistic to allow a direct route outside the network:

Problem (b) Find the connected network of length L that minimizes the
expected time t(ξ1, ξ2) between independent(ρ) points,

t(ξ1, ξ2) = min(||ξ1 − ξ2||, s(ξ1) + s(ξ2))

s(ξ) = distance from ξ to the closest point on the network.

(For large L the two problems are essentially the same).
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We seek the actual optimal network for each L – how does the shape
evolve as L grows?

We work numerically. Mostly we consider specific parameterized
shapes and optimize over parameters

Alternatively try simulated annealing to optimize over all networks.

Lemma: An optimal network must be a tree (or single path).

Because: If there is a circuit, removing a length ε segment costs order ε2

but reattaching it elsewhere benefits order ε.

We do have a theorem concerning the L→∞ behavior. This result is
not so interesting, so [recall name of Musk’s tunneling company]
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Take a starting density ρ. Write d(L) for the expected
distance-to-network in the optimal network of length L.

Theorem (The Boring Theorem)

d(L) ∼ 1

4L

(∫

R2

ρ1/2(z) dz

)2

as L→∞.

What the argument actually shows is that a sequence of networks is
asymptotically optimal as L→∞ if and only if the rescaled local pattern
around a typical position z consists of asymptotically parallel lines with
spacing proportional to ρ−1/2(z), but the orientations can depend
arbitrarily on z . Visualize a fingerprint.
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Near-optimal network for uniform density on square.

Note that the argument above show that, in this extreme model,

d
dLopt(L) � 1

4 ↵̄(L).

Note also that the proofs of both parts of Proposition 1 require S = 1: in part (a) because
the original route may use the removed segment, in part (b) because the original route
might be go via A⇤.

The large L setting. A next observation is that, for the uniform density on a square
and for large L, it seems intuitively clear that a network as in Figure 1 will be near-optimal.
We want the network to come close to all points in the square; for a curve of length L the
region within distance � of the curve can have at most area L� (plus a small area near
the endpoints) and so is maximized by straight lines, and decreased by both curves and
junctions which cause “overlap” of adjacent regions. This intuition leads to a theorem in
the asymptotic regime. We state and prove the result for dist(L), the mean distance from
a ✓-random point to the closest point in the network, and then re-interpret for the extreme
model.

Figure 1: A near-optimal network for the uniform distribution on a square.

Theorem 2 (a) In the extreme model, for any density ✓,

lim
L!1

L · dist(L) = 1
4

✓Z
f1/2(z)dz

◆2

. (1)

(iv) If ✓ is radially symmetric (rotationally invariant) then certain spiral networks are
asymptotically optimal.

Outline proof of Theorem 2. The argument follows a style of analysis used in many “spatial
optimization” settings (for instance, the Euclidean TSP) for studying this “denser and

6
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A simple topology is the star network, with n ≥ 2 branches of lengths
L/n from the center, with optimal choice of n = nL. Comparing with the
other shapes we have examined leads us to the (rather unexciting)

Observation. For the Gaussian density, the star networks are optimal or
near-optimal over the range 0 < L ≤ 16.

[We guess this is quite robust – true for other densities]
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L = 0.5 L = 4
L = 9

Figure 3: The optimal star networks for L = 0.5 and L = 4 and L = 9 (Gaussian density:
the dashed circle indicates 1 s.d., so contains about 40% of the population).

L = 8.0 L = 8.5 L = 11.0

Figure 4: The “horse” network (left), the 2-arc network (center) and the 4-arc network
(right).

Figure 5: Benefit from “horse” network (left) and from 2- and 4-arc networks (right) com-
pared with star network.

10
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L = 14.0

Figure 6: The spider network.

Figure 7: Benefit from spider network compared with star network.

11

Figure 8: L = 40: A locally optimal tree within the hexagonal lattice found by simulated
annealing.

Figure 9: A finite approximation to an asymptotically optimal tree network.

12

As L grows an asymptotically optimal network becomes a branching tree.

Also one can construct spirals as asymptotically optimal. But contrary to
our intuition, numerics say the tree is better (at second order).
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Recall
Observation. For the Gaussian density, the star networks are optimal or
near-optimal over the range 0 < L ≤ 16.

This was originally rather surprising.

By “reverse engineering” the Boring Theorem we see that star networks
are asymptotically optimal for the non-Gaussian density of the rotationally
invariant distribution on the radius-r0 disc with R uniform on [0, r0].

Suggests robustness to density.
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Conclusions from Setting 3: Optimal subway networks.

Model is too unrealistic.

Our intuition was poor.

Don’t hold your breath for the global sensation.
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Topic 4: A Hard Open Research Problem.

To me a network is a finite (n vertices) connected edge-weighted
undirected graph, vertices v , x , y , . . . and edge weights we = wxy .

Note two opposite conventions for interpreting weights:

In TSP-like setting, weight is distance or cost.

In social networks, weight is strength of relationship (this talk).

Many stochastic processes can be defined over a general network. I will
discuss bond percolation because it is essentially the SI epidemic model
and I am interested in what one might be able to say about more realistic
epidemic models.

David Aldous Scattered thoughts from applied probability



A back-of-an-envelope calculation
Stop-and-Go at Airport Security

Subway networks
Networks and phase transitions

Bond percolation.

An edge e of weight we becomes open at an Exponential(we)
random time.

In this process we can consider

C (t) = max size (number of vertices) in a connected
component of open edges at time t

This elates to “emergence of the giant component”. Studied extensively
on many non-random and specific models of random networks. Can we
say anything about n→∞ asymptotics for (almost) arbitrary networks?
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Suppose (after time-scaling) there exist constants t∗ > 0, t∗ <∞ such
that

lim
n

ECn(t∗)/n = 0; lim
n

ECn(t∗)/n > 0. (4)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) at some random time of order 1.

Proposition (1)

Given a sequence of networks satisfying (4), there exist constants τn such
that, for every sequence εn ↓ 0 sufficiently slowly, the random times

Tn := inf{t : Cn(t) ≥ εnn}

satisfy
Tn − τn →p 0.

The Proposition asserts, informally, that the “incipient” time at which a
giant component starts to emerge is deterministic to first order.
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Reformulation as epidemics (well known but subtle).
An SI model refers to a model in which individuals are either infected or
susceptible. In the network context, individuals are represented as
vertices of an edge-weighted graph, and the model is

for each edge (vy), if at some time one individual (v or y)
becomes infected while the other is susceptible, then the other
will later become infected with some transmission probability
pvy .

These transmission events are independent over edges. Regardless of
details of the time for such transmissions to occur, this SI model is
related to the random graph model defined by

edges e = (vy) are present independently with probabilities
pe = pvy .

The relation is:

(*) The set of ultimately infected individuals in the SI model is,
in the random graph model, the union of the connected
components which contain initially infected individuals.
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In modeling an SI epidemic within a population with a given graph
structure, we regard edge-weights we = wvy as indicating relative
frequency of contact. Introduce a virulence parameter θ, and define
transmission probabilities

pe = 1− exp(−weθ). (5)

Note this allows completely arbitrary values of (pe), by appropriate choice
of (we). Now the point of the parametrization (5) is that the set of
potential transmission edges is exactly the same as the time-θ
configuration in the bond percolation model. So we can translate our
Proposition into a statement about whether the SI epidemic model is
pandemic (has Θ(n) vertices ultimately infected) in terms of the number
κn of initially infected vertic

Even though this is mathematically trivial, it is conceptually subtle. A
real-world flu epidemic proceeds in real-world time; instead we just
consider the set of ultimately infected people and actual transmission
edges; this structure, as a process parametrized by θ, is a nice stochastic
process (bond percolation).
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Proposition (2)

Take edge-weighted graphs with n→∞, consider the SI epidemics with
transmission probabilities of form (5), and write C ′n,κ(θ) for the number
of ultimately infected individuals in the epidemic started with κ uniformly
random infected individuals. Suppose there exist some 0 < θ1 < θ2 <∞
such that, for all κn →∞ sufficiently slowly,

lim
n

n−1EC ′n,κn
(θ1) = 0; lim inf

n
n−1EC ′n,κn

(θ2) > 0. (6)

Then there exist deterministic τn ∈ [θ1, θ2] such that, for all κn →∞
sufficiently slowly,

n−1C ′n,κn
(τn − δ)→p 0, n−1C ′n,κn

(τn + δ)�p 0

for all fixed δ > 0.
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Proposition 2 provides a subcritical/supercritical dichotomy for the SI
epidemics under consideration. The conceptual point is that, for virulence
parameter θ not close to the critical value τn, either almost all or almost
none of the realizations of the epidemic affect a non-negligible proportion
of the population. It really is a phase transition, and exists for
essentially arbitrary large networks.

But the proof is very special. The open problem is to prove similar
results for more realistic epidemic models.
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