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Could be a 5-minute talk

Here is a process that looks interesting.

It exists.

I would like to know more about it.

Having more time I will first give background, which perhaps fits the
theme

stochastic coalescence meets stochastic geometry.

Rapid overview of stochastic coalescence – stuff we knew ≥ 25 years
ago.

The natural geometric analogs – general problems I couldn’t do 10
years ago and still can’t do (and no-one else has thought about).

The topic of this talk – a special case I can do. Proofs in arXiv
paper.
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3 conceptually different starting points for what I will call coalescence
(“stuff joining up”) and its opposite fragmentation (“stuff splitting
up”).

1. Most familiar within Applied Probability is the topic centered on the
Kingman coalescent model; the objects are “lines of descent” traced
backwards in real-world time.

2. An older setting envisages chunks of physical matter splitting or
joining (e.g. polymers or colloids studied in physical chemistry). This has
a huge literature going back to 1917.
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3. As an intermediate viewpoint, consider random splitting or joining of
mathematical objects. Here is the simplest example.

Consider the infinite line as “space”.
At time −∞ < t <∞ there is a Poisson point process, rate et per unit
length, of cuts. This defines intervals of Exponential(et) lengths.

Reinterpret lengths of intervals as masses of clusters in some unspecified
(not d-dimensional) space. [board] As t varies what happens to these
clusters?

As t decreases, the process fits the verbal formulation of the general
(continuous-mass) Smoluchowski coagulation equation

a given cluster of mass x merges with some cluster of size y at
rate K (x , y)ft(y)dy where ft(y) is the pdf of cluster masses at
time t

in the special case K (x , y) = 2.
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Re-parameterize via s = et : at time 0 < s <∞ there is a Poisson point
process, rate s per unit length, of cuts.

As s increases, the process fits the verbal formulation of the general
(continuous-mass) fragmentation process

A cluster of mass x splits at rate xα into two clusters of sizes
Ux and (1− U)x

in the special case α = 1 and U =d Uniform(0, 1).
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Starting from this one example there are many directions one can go.

A. The mathematically simplest context for general models is
fragmentation. In the classical scientific literature one writes down the
collection of differential equations for

f (x , t) = relative numbers of mass-x clusters at time t.

A nicer “probabilistic” approach (e.g. Brennan - Durrett 1987) is to
observe that the the mass of the cluster containing a typical atom is an
easily-described Markov process on R+. In particular, provided smaller
clusters split more slowly than larger ones, under mild assumptions we
get an asymptotic self-similarity result:

time-t size distribution of clusters ∼ t−βX .

On the other hand, if smaller clusters split more quickly then (under mild
assumptions) then the matter may be “reduced to dust” in finite time.
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Studying coalescence with general kernels K (x , y) is harder – the
process “mass of the cluster containing a typical atom” is not a
simply-described Markov process. But classical work implies a similar
dichotomy:

if larger clusters merge more quickly, then infinite clusters appear in finite
time – gelation

if not then we expect asymptotic self-similarity

time-t size distribution of clusters ∼ tβX .

Note: 4 flavors of coalescing models.
Stochastic models with finite total mass; either continuous (total mass 1)
or discrete (total mass N).
Deterministic models (informally, limits of expectations in the stochastic
models) for densities in infinite volume:
either discrete: f (i , t) = density of mass-i clusters
or continuous: f (x , t)dx = density of mass-dx clusters.
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B. In any model there is qualitative time-reversal duality; if one direction
of time is a model of (binary) fragmentation then the other direction is a
model of (binary) coalescence. But when is there an exact duality
between simple models, as in our previous example?

A non-obvious example is provided by what we call the additive
Marcus-Lushnikov process and the additive coalescent. The
following construction is explicit in Pitman (1998), implicit in Yao (1976).

Take a random N-vertex tree, that is a uniform pick from the NN−2 trees
on N distinguished vertices. Attach independent exponential(1) random
variables ξe to each edge e. At each 0 ≤ t <∞ there is a forest
consisting of the edges {e : ξe ≤ t}.
• At t = 0 there are N isolated vertices.
• At t =∞ there is one component of size N.
Over 0 < t <∞ the process “sizes of connected components” evolves as
the additive Marcus-Lushnikov process, that is the discrete stochastic
coalescent with K (x , y) = x + y .
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Part 2: are there interesting geometric (2-dimensions) analogs of
coalescence/fragmentation?

Stochastic geometry contains many models of random partitions of the
plane, typically based on a Poisson point process.

But the usual models do not extend directly to mathematically natural
models of binary coalescence/fragmentation, because adding another
point affects nearby regions. As a theory project, can we find tractable
models of coalescence/fragmentation of partitions in the plane?
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My point in giving the classical non-geometric theory background is that
it suggests

1 Models of fragmentation should be easier to study.

2 Look for special processes with exact coalesce/fragment duality.

3 Coalescence models should show dichotomy between “percolation”
(infinite clusters appear in finite time) and “self-similarity” (limit
distribution exists under rescaling).

Where does this get us ???
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Models of fragmentation should be easier to study.

One could use the Poisson line process

but this is “non-local” and not binary.
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There is a class of STIT models in which regions are independently split
via some scale-invariant rule. As in the non-geometric setting one can
study “the region containing a typical point” as an autonomous Markov
process.

However the time-reversed coalescence process is essentially deterministic.
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Can we find special processes with exact stochastic
coalesce/fragment duality?
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Any set of edges in the lattice Z2 determines a partition of R2 via planar
duality. So take the classical bond percolation process – edges appear at
Exponential(1) times – and consider it as a partition-valued process.

It evolves according to the general rule

adjacent regions A,B merge at rate K (A,B)

in the special case

K (A,B) = length of boundary between A and B.

David Aldous Poissonian rain coloring and a self-similar process of coalescing planar partitions



So 10 years ago I thought about the general class of models

adjacent regions A,B merge at specified rate K (A,B)

Intuitively we expect the same dichotomy:
• if larger regions merge sufficiently faster than smaller ones then infinite
regions appear in finite time – percolation
• if not then asymptotic self-similarity.

But that project was . . . . . . . . .EPIC FAIL . . . . . . . . . couldn’t prove
anything non-trivial.

• for K ≡ 1 intuitively clear there is percolation (Peierls contours almost
works)
• couldn’t prove any such process has a self-similar limit.

Simulations and discussion in Empires and percolation: stochastic
merging of adjacent regions (2010).
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Part 3: On to the new material

Instead of visualizing countries merging into empires, let us visualize
countries with capital cities. Here is a model. Specify that
• at time t the capital cities form a rate et PPP

with the natural coupling: as t decreases cities disappear at stochastic
rate 1. What happens to the countries? We specify
• when a city is deleted, its country is appended to the country

whose capital city is closest to the deleted city.

Because the PPP of cities is scale-invariant, it is intuitively very plausible
that the partition-valued process has asymptotic self-similarity, implying

there exists a self-similar version of the partition-valued process
over time ∞ > t > −∞.

This is Theorem 2 in the paper. But we don’t know much about this
process, quantitatively or qualitatively.

This model arose from a (superficially) different model, as follows.
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Choose k ≥ 2 distinct points z1, . . . , zk in the unit square, and assign to point
zi the color i from a palette of k colors. Take i.i.d. uniform random points
Uk+1,Uk+2, . . . in the unit square, and inductively, for j ≥ k + 1,

give point Uj the color of the closest point to Uj amongst
U1, . . . ,Uj−1 where we interpret Ui = zi , 1 ≤ i ≤ k .

Simulations and intuition strongly suggest that there is (in some sense) an

n→∞ limit which is a random partition of the square into k colored regions.

This “coloring model” was considered independently by several people over last

10 years, but no results.
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At first sight the convergence assertion seems easy.

First consider Voronoi regions. Intuitively, the area of the Voronoi region
of a given color should behave almost as a martingale, because a new
particle near the boundary seems equally likely to make the area larger or
smaller. If one could bound the martingale approximation well enough to
establish a.s. convergence of such areas, the convergence theorem would
follow rather trivially. But doing so seems to require detailed knowledge
of the geometry of the boundary.

We will give a different formalization (later) of this “convergence
theorem” as Theorem 1 of the paper.
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Simulations also suggest that the boundaries between these limit regions
should be fractal, in some sense.
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It is technically convenient to work with a slightly more sophisticated
version of the “Poisson coloring” model.

Consider the space-time “Poisson rain” process on R2 where the particles
arriving before time t form a PPP of rate et per unit area. Consider a
time t1; assign different colors to the different particles present at time
t1. Then run the coloring process over t1 < t <∞.

Theorem 1: the convergence theorem says we can take the t →∞
limit to define a partition A(t1) of R2 into countries with capital cities.

(outline later)
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Consider the space-time “Poisson rain” process on R2 where the particles
arriving before time t form a PPP of rate et per unit area. Consider a
time t1; assign different colors to the different particles present at time
t1. Then run the coloring process over t1 < t <∞.
Theorem 1: the convergence theorem says we can take the t →∞
limit to define a partition A(t1) of R2 into countries with capital cities.

What is the relation between A(t1) and A(t1 − dt)????

If a new particle arrives at z during [t1 − dt, t1] with nearest previous
particle z ′, then the limit regions split as Az′(t1 − dt) = Az′(t1) ∪ Az(t1).

So in reversed time the regions merge as claimed.

• when a city is deleted, its country is appended to the country
whose capital city is closest to the deleted city.

And self-similarity of this “coalescing partitions” process follows from
self-similarity of the space-time PPP.
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How to formulate the convergence theorem

Instead of using Voronoi regions we use a weaker formulation. At time t
the particles form a PPP of rate et , so the (weighted) empirical measure
that puts weight e−t on each particle is a random measure that
converges a.s. to Lebesgue measure as t →∞. So for each color c
(representing a particle at a given time) there is the corresponding
random measure µc,t = µc,t(ω,A), A ⊂ R2 counting only the color-c
particles. We prove that for each color c

µc,t → some limit random measure µc,∞ as t →∞ (in probability;
weakly).

µc,∞ is Lebesgue measure restricted to some random measurable set.

So we can define A(t1) as the partition into measurable sets obtained in
this way from coloring the particles present at time t1.

Note this does not give topological information about the regions.
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Outline of proof the convergence theorem

Genealogical tree structure: arriving particle is “child” of nearest
previous particle.

w.l.o.g take t1 = 0; need to show that particles which are very close
at a large time t have w.h.p. the same color, that is same time-0
ancestor.

By self-similarity, this is equivalent to showing that for particles at
O(1) distance at time 0, their “lines of descent” merge at some time
−T and some distance R that we can bound.

So we need to study lines of descent.
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The first part of the proof shows that for a typical particle ξ present at
time 0,

• the distance to the ancestor at time −t is of order et/2,
which is the same order as the distance to the nearest particle present at
time −t.

In the second part of the proof we first consider two particles present at
time 0 and distance r apart. Their lines of descent merge at some
random past time −Tcoal, and we need an upper bound (next slide) on
the tail of this distribution. The methods in these sections are very
concrete – calculations and bounds involving Euclidean geometry and
Poisson processes – though rather intricate in detail.
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Proposition

There exist constants K , β <∞ and ρ > 0 such that, in the “coupled
lines of descent” process, for any r

P(Tcoal > t) ≤ K exp(−ρt) for all t > β log+ r . (1)
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The other ingredient is a coupling argument. Recall µc,t is the random
measure putting weight e−t on each time-t descendant of a given time-0
particle c . We need to show that for 0� t1 � t2

µc,t1 and µc,t2 are close (in probability), with distance → 0 as t1 →∞.

The argument is rather subtle because (analogy with supercritical
branching processes) the distribution of time-t1 ancestor of uniform
time-t2 descendant is not uniform. But once we know the limit random
measures exist, Proposition 1 is enough to show that a limit random
measure is Lebesgue measure on some random set.
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