David Aldous

Percolating paths through random points

- Focus on one particular set of problems (which look easy)
- Digression to different views of "big picture".

Big Picture

Random variable X_n associated with some "size n" random structure. Seek to study EX_n . Suppose

(i) can't do useful explicit calculations within size-n model

(ii) know order-of-magnitude, say order n.

Guess there is some limit constant \boldsymbol{c}

$$n^{-1}EX_n \to c. \tag{1}$$

Two well-known techniques one can use to try to prove (1):

- subadditivity
- weak convergence

Topic of this talk. Take a Poisson point process (PPP) of rate 1 in \mathbb{R}^d for $d \ge 2$. There should be some number whose intuitive interpretation is

"smallest possible average edge length in a path through an infinite subset of points of the PPP".

Analog to critical value in continuum percolation, where a rigorous definition is easy. We'll discuss 4 possible formalizations.

1. Short paths from the origin. For each $m \ge 1$ define a r.v.

 T_m = length of shortest path $0, \xi_1, \xi_2, \dots, \xi_m$ through *m* distinct points of the PPP.

Guess: $T_m/m \rightarrow \text{constant}$.

But is this easy to prove?

2. Paths across a diagonal. For s > 0 consider the cube $[0, s]^d$ with 0 and s as diagonally opposite vertices. For a path π : $0, \xi_1, \xi_2, \ldots, \xi_m, s$ through distinct points of the PPP in $[0, s]^d$, write

 $m(\pi) =$ number of points

 $\ell(\pi) = \text{length of path}$

and then define a r.v.

$$W_s = \min_{\pi} \frac{\ell(\pi)}{m(\pi)}$$

(minimum of average edge-length in a path).

Guess: $W_s \rightarrow \text{constant}$ as $s \rightarrow \infty$.

This definition designed for help with subadditivity.

3. Cycles through a given proportion of points.

Poissonized version of a result going back to Beardwood-Halton-Hammersley (1959) on "the Euclidean TSP":

Write N(s) for number of points of the PPP in the cube $[0,s]^d$. Define $L_s(1) :=$

 $\frac{\text{length of shortest cycle through all } N(s) \text{ points}}{N(s)}$

(minimum of average edge-length in a tour).

BHH proved (subadditivity argument) $L_s(1) \rightarrow c(1)$.

We consider a variation: Define $L_s(\delta) :=$

length of shortest cycle through some $\lceil \delta N(s) \rceil$ points $\lceil \delta N(s) \rceil$

(minimum of average edge-length in a sparse cycle).

Guess: $L_s(\delta) \to c(\delta)$ as $s \to \infty$.

Is this easy to prove by subadditivity?

Guess:

the function $\delta \rightarrow c(\delta)$ is increasing;

the limit c(0+) is the limit constant in Formalizations 1 and 2.

Seek definition directly on \mathbb{R}^d , as with continuum percolation.

4. Invariant paths on \mathbb{R}^d . Consider pair $(\mathcal{X}, \mathcal{E})$ where \mathcal{X} is a locally finite point set in \mathbb{R}^d and \mathcal{E} is set of edges (x_i, x_j) with $x \in \mathcal{X}$, these edges forming a collection of doubly-infinite paths. Formalize space S of such pairs – marked point process. Consider a translation-invariant probability measure μ on S under which the points form a rate-1 PPP. There there exist constants $\delta(\mu), \ell(\mu)$ such that, writing \mathcal{V} for end-vertices of \mathcal{E} ,

 $E\left|\mathcal{V}\cap[0,s]^d\right|=\delta(\mu)\ s^d$

 $E\left(\text{length of }\mathcal{E}\cap[0,s]^d\right)=\delta(\mu)\ell(\mu)s^d.$

Via Palm theory, interpret

 $\delta(\mu)=$ proportion of the Poisson points which are in some path

 $\ell(\mu)$ = average edge-length within paths.

Define $\overline{c}(\delta) := \inf\{\ell(\mu) : \delta(\mu) = \delta\}$

Guess: $\bar{c}(\delta) = c(\delta)$ (from formalization 3).

Easy to prove via weak convergence?

Which of these guesses are in fact easy to prove?

Recall how subadditivity is used in Beardwood-Halton-Hammersley. Same ideas work to prove

$$L_s(\delta) \to c(\delta)$$
 as $s \to \infty$.

Moreover there are two cheap tricks:

(i) use proportion δ points in some subsquares, 0 in others;

(ii) use proportion δ_1 points in some subsquares, proportion δ_2 in others

which show

(i) $\delta \rightarrow c(\delta)$ is weakly increasing;

(ii) $\delta c(\delta)$ is convex.

This implies: either

(a) $c(\delta)$ is strictly increasing on $0 < \delta < 1$; or (b) $c(\delta)$ is constant on some $0 < \delta < \delta_0$.

How to relate "paths across a diagonal" to this?

If we know a limit constant exists for W_s , easy to show limit = c(0+).

One can give general result on "optimal cost/reward ratios" in subadditive settings. The trick is: for constant γ the criterion

 $E\min\{\ell(\pi) - \gamma m(\pi) : \pi \text{ path 0 to s}\} \ge 0 \forall s$ determines a critical value γ_0 which is the limit

 $W_s := \min\{\ell(\pi)/m(\pi) : \pi \text{ path 0 to } s\} \rightarrow \gamma_0.$

One can invent many other problems which can be solved this way

Short paths from the origin. T_m = length of shortest path through m distinct points of the PPP. Natural approach:

Let's suppose $T_m/m \rightarrow c^*$ where (easy) $c^* \leq c(0+)$.

Then the **Conjecture** $c^* = c(0+)$ is equivalent to:

there exist *m*-step paths from the origin, with length $\sim c^*m$, which stay inside ball of radius o(m) (sublinear growth).

Maybe proof requires more sophisticated "percolation" techniques. Invariant paths on \mathbb{R}^d .

easy to justify via **local weak convergence**, which looks at a window around a randomlychosen origin in the cube $[0, s]^d$.

Letting $s \to \infty$ and considering a subsequential weak limit gives a translation-invariant distribution on points-and-paths.

Summary of "percolating paths through random points"

Easy to prove equivalence of (2) Paths across a diagonal (3) Cycles through a given proportion of points (4) Invariant paths on \mathbb{R}^d and that c(0+) > 0 (comparison with branching RW).

Open Problems

- (1) Short paths from the origin?
- $c(\delta)$ strictly increasing?
- $c(\delta) c(0+) \simeq \delta^{\alpha}$ for some α , maybe $\alpha = 1/3$?
- Monte Carlo study of $c(\delta)$?
- $\operatorname{var}(T_m) \asymp m^{2/3}$, or just o(m)?

The invariant measure on (collections of0 infinite paths fits theme **Stochastic analysis and non-classical random processes.** Can we do calculations with this type of random object?

 \exists lots of scattered work on discrete infinite random graphical structures of different kinds In particular there is a "mean-field" model where one can do explicit calculations.

In our Euclidean setting, no hope for explicit calculation on $c(\delta)$. But maybe

(i) study strict monotonicity of $c(\delta)$

(ii) let $\delta \rightarrow 0$, do spatial rescaling; guess limit is some continuum self-avoiding path – related to SLE ???