A framework for imperfectly observed networks

David Aldous

12 July 2016

David Aldous A framework for imperfectly observed networks

3 x 3

The talks at this workshop cover a range of topics which is very broad, but loosely form two categories.

- Properties of specific probability models of random graphs
- Algorithms/statistical estimation for problems over arbitrary graphs.

This talk is midway between. Envisage an arbitrary true network we can't observe, and devise a probability model for observed "noisy" network. How do we estimate some statistic – some quantitative feature – of the true network?

Aside. There are many other ways to model "imperfectly observed networks" – e.g. talks by Peter Orbanz and by Elizaveta Levina. My formulation is not claimed to be very useful for real-world data but (I do claim) interesting as math theory.

-

Rant # 17

A math model of a real-world network typically starts as a graph. This is weird, because almost all real networks are better represented as *edge-weighted* graphs. The reason this isn't the default (I guess) is that there are several conceptually different interpretations of edge-weight:

- flow capacity (road network, water network)
- distance or cost (TSP)
- strength of association (close friend or acquaintance or Facebook friend).

I'll consider the last class and think of *social networks* – collaboration networks, corporate directorships, Senators' voting record, etc (note many biological networks are also in this class). Even within this class of social networks there are different interpretations of *strength of association*.

3

A **network** is a finite edge-weighted graph intended to model something in the real world. In contexts where edge-weights w_e indicate some notion of *strength of association* it is reasonable to assume that stronger associations are easier to observe.

One way to quantify *strength of association* is to interpret it as *frequency of interaction* and to suppose what we observe is the interactions. This suggests a probability model:

for each edge e = (vy), entities v and y interact at the times of a rate-w_e Poisson process

and we observe these interactions.

That is, what we observe over time [0, t] is the number $N_e(t)$ of interactions over edges e.

- E - E

So this provides our *framework for imperfectly observed networks*. To repeat in different words

A **network** is a finite edge-weighted graph. We are concerned with some "statistic" Γ , a functional $G \to \Gamma(G)$ on finite edge-weighted graphs G. There is a network G^{true} with known vertices but unknown edges and edge-weights w_e . What we observe is the interaction process described above. That is, what we observe over time [0, t] is the Poisson (tw_e) number of interactions $N_e(t)$ over edges e.

We can represent our observations in two equivalent ways: either as the random multigraph with $N_e(t)$ copies of edge e, or as the random weighted graph $G^{obs}(t)$ in which edge e has weight $t^{-1}N_e(t)$.

How do we use these observations to estimate $\Gamma({\it G}^{\rm true}),$ and how accurate is the estimate?

医下颌 医下颌 医

David Aldous A framework for imperfectly observed networks

◆□> ◆□> ◆三> ◆三> 三三 - のへで

Some general comments.

- For any problem about networks where you assumed the network is known, you could ask this "imperfectly-observed" variation.
- We always have the naive frequentist estimator $\Gamma(G^{obs}(t))$. It's natural to study, but there is no reason to think it is optimal.
- We always have the naive Bayes estimator (flat prior on each w_e) but
- "Computation is free" not concerned with computational complexity – instead we regard observation time as the "cost".

Any estimator like $\Gamma(G^{obs}(t))$ for fixed t will have error depending on the unknown G^{true} . The "elegant" formulation of a mathematical problem is:

Program

Given a statistic Γ , define a ("universal") stopping rule T and an estimator such that the relative error of the estimator, say $\Gamma(G^{obs}(T))/\Gamma(G^{true}) - 1$, is w.h.p. small **uniformly** over all networks G^{true} .

글 🖌 🖌 글 🛌

3

Program

Given a statistic Γ , define a ("universal") stopping rule T and an estimator such that the relative error of the estimator, say $\Gamma(G^{obs}(T))/\Gamma(G^{true}) - 1$, is small **uniformly** over all networks G^{true} .

This is ongoing joint work with grad student Lisha Li.

The bottom line of this talk. We have no idea how to do this for most interesting/natural statistics, but we can do this for a few statistics which are less interesting/natural.

The rest of this talk:

- A typical "easy" example.
- A key open problem.
- A backwards approach.

4 3 K

Observed and true community structure.

For a subset A of vertices write A^* for the set of edges with both end-vertices in A. Write

$$\overline{\mathbf{w}}_m^{ ext{true}} = m^{-2} \max\left\{\sum_{e \in A^*} w_e : |A| = m\right\}$$

- essentially the maximum edge-density in a size-m community. Ignoring computational complexity, suppose we can compute the analogous observable quantity

$$\overline{W}_m^{\mathrm{obs}}(t) = m^{-2} \max\left\{\sum_{e \in A^*} N_e(t)/t : |A| = m\right\}.$$

To make inferences from the observed $G^{\rm obs}(t)$ to $G^{\rm true}$ we need $m \sim \gamma \log n$ at least. Then (just using large deviations and counting) we can be confident that $\overline{\mathbf{w}}_m^{\rm true}$ is in a certain interval, roughly

$$\left[\overline{W}_{m}^{\mathrm{obs}}(t) - \sqrt{\frac{2\overline{W}_{m}^{\mathrm{obs}}(t)}{\gamma t}}, \overline{W}_{m}^{\mathrm{obs}}(t)\right].$$

I naa

A similar but more complicated estimator works for **max-weight matching**.

Let's standardize time until so that there are O(1) observed interactions per vertex per unit time. The estimators above require only O(1) time – this is "the interesting case".

Informally, what can we say about $G^{\rm true}$ when we have observed an average 24 interactions per vertex?

A key open problem.

Typically G^{true} will be connected; but (coupon collector) typically we need order log *n* observed interactions per vertex until G^{obs} is connected – "not the interesting case" because then we can estimate almost all w_e accurately.

Here is a fundamental, albeit vague, open problem in the "interesting" time regime $t = \Theta(1)$.

if we observe $G^{obs}(t)$ has a "highly connected" (in some sense) giant vertex set of size $(1 - \delta)n$, then we can infer that G^{true} has a similarly "highly connected" giant vertex set of size $(1 - \beta(\delta))n$?

There are many ways to quantify connectedness by a statistic Γ in this context, for instance via spectral gap of the (restricted) graph Laplacian. The *intuition* is that randomness makes G^{obs} less well connected than G^{true} – but we have no idea how to prove any reasonable version.

EN VEN E VQQ

Digression: proving inference assertion involves

The weird logic of freshman (frequentist) statistics

Suppose we have a theorem of the format

Theorem: if G^{true} has property Q^* then with $\geq 95\%$ probability G^{obs} has property Q.

We can restate this as an inference procedure of the format

Inference: if G^{obs} does not have property Q then we are $\geq 95\%$ confident that G^{true} does not have property Q^* .

But we want to state the inference in "positive" terms, so we negate the property and restate as follows.

If we wish to justify an inference procedure of the format

Inference: if G^{obs} has property P then we are \geq 95% confident that G^{true} has property P^{*}

then we need to prove a theorem of the format

Theorem: if G^{true} does not have property P^* then with $\geq 95\%$ probability G^{obs} does not have property P.

Usually with random graph models we are interested in establishing some "desirable" property; paradoxically in our framework we need to show $G^{\rm obs}$ has "worse" properties than $G^{\rm true}$. But our intuition is that the randomness in $G^{\rm obs}$ will typically make it "worse" than $G^{\rm true}$, so this might be true (for instance in the "well-connected very large component" context above).

On the positive side, here is a "backwards" approach to our program, illustrated by example. Consider

 $T_k^{tria} = \inf\{t : \text{ observed multigraph contains } k \text{ edge-disjoint triangles}\}.$

 $T_k^{span} = \inf\{t : \text{ observed multigraph contains } k \text{ edge-disjoint spanning trees}\}.$

Proposition

$$\begin{split} \frac{\mathrm{s.d.}(T_k^{tria})}{\mathbb{E} T_k^{tria}} &\leq \left(\frac{e}{e-1}\right)^{1/2} k^{-1/6}, \ k \geq 1.\\ \frac{\mathrm{s.d.}(T_k^{span})}{\mathbb{E} T_k^{span}} &\leq k^{-1/2}, \ k \geq 1. \end{split}$$

So here the bounds are independent of \mathbf{w} , meaning that we can estimate the statistics $\mathbb{E}T_k$ without assumptions on \mathbf{w} .

So the "backwards" approach is to seek some observable quantity which is concentrated around its mean, independent of \mathbf{w} , which therefore provides an estimator of the statistic defined by the expectation.

From arXiv preprint *Weak Concentration for First Passage Percolation Times on Graphs and General Increasing Set-valued Processes* and the title give a hint of the proof method.

Our observation process, considered as a growing multigraph, is an increasing set-valued process, for which there is a simple general bound on $\frac{\text{s.d.}(T)}{\mathbb{E}T}$ for the first time T that some "increasing" property holds. In our context, we have

 $T_k = \inf\{t: \text{ observed multigraph contains } k \text{ edge-disjoint objects}\}$

and the argument for the bound uses only one object-specific calculation, which I will outline as a game, which is trivial in the two cases (triangles and spanning trees) above.

医下颌 医下颌 医

The game. I choose a **multigraph** with the given "contains *k* edge-disjoint **objects**" property, and I then delete an edge, and then show you. Can you always find many different ways to restore the property by creating a few new edges?

Spanning trees; deleting edge creates a split $(A, V \setminus A)$ of vertex-set V; sufficient for you to create any edge between A and $V \setminus A$.

Triangles: sufficient for you to create one new triangle.

The bound in the general inequality involves (worst-case) mean "restore" time in the observation process.

Open problem; Can we do this for the "*k*-edge connected" property? (Menger's theorem doesn't seem to help).

글 🕨 🔺 글 🕨 👘

3