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The talks at this workshop cover a range of topics which is very broad,
but loosely form two categories.

Properties of specific probability models of random graphs

Algorithms/statistical estimation for problems over arbitrary graphs.

This talk is midway between. Envisage an arbitrary true network we can’t
observe, and devise a probability model for observed “noisy” network.
How do we estimate some statistic – some quantitative feature – of the
true network?

Aside. There are many other ways to model “imperfectly observed
networks” – e.g. talks by Peter Orbanz and by Elizaveta Levina. My
formulation is not claimed to be very useful for real-world data but (I do
claim) interesting as math theory.
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Rant # 17
A math model of a real-world network typically starts as a graph. This is
weird, because almost all real networks are better represented as
edge-weighted graphs. The reason this isn’t the default (I guess) is that
there are several conceptually different interpretations of edge-weight:

flow capacity (road network, water network)

distance or cost (TSP)

strength of association (close friend or acquaintance or Facebook
friend).

I’ll consider the last class and think of social networks – collaboration
networks, corporate directorships, Senators’ voting record, etc (note many
biological networks are also in this class). Even within this class of social
networks there are different interpretations of strength of association.
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A network is a finite edge-weighted graph intended to model something
in the real world. In contexts where edge-weights we indicate some
notion of strength of association it is reasonable to assume that stronger
associations are easier to observe.

One way to quantify strength of association is to interpret it as frequency
of interaction and to suppose what we observe is the interactions. This
suggests a probability model:

for each edge e = (vy), entities v and y interact at the times of a
rate-we Poisson process

and we observe these interactions.

That is, what we observe over time [0, t] is the number Ne(t) of
interactions over edges e.
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So this provides our framework for imperfectly observed networks. To
repeat in different words . . . . . . . . .

A network is a finite edge-weighted graph. We are concerned with some
“statistic” Γ, a functional G → Γ(G ) on finite edge-weighted graphs G .
There is a network G true with known vertices but unknown edges and
edge-weights we . What we observe is the interaction process described
above. That is, what we observe over time [0, t] is the Poisson(twe)
number of interactions Ne(t) over edges e.

We can represent our observations in two equivalent ways: either as the
random multigraph with Ne(t) copies of edge e, or as the random
weighted graph G obs(t) in which edge e has weight t−1Ne(t).

How do we use these observations to estimate Γ(G true), and how
accurate is the estimate?
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Some general comments.

For any problem about networks where you assumed the network is
known, you could ask this “imperfectly-observed” variation.

We always have the naive frequentist estimator Γ(G obs(t)). It’s
natural to study, but there is no reason to think it is optimal.

We always have the naive Bayes estimator (flat prior on each we)
but . . . . . .

“Computation is free” – not concerned with computational
complexity – instead we regard observation time as the “cost”.

Any estimator like Γ(G obs(t)) for fixed t will have error depending on the
unknown G true. The “elegant” formulation of a mathematical problem is:

Program

Given a statistic Γ, define a (“universal”) stopping rule T and an estimator
such that the relative error of the estimator, say Γ(Gobs(T ))/Γ(G true) − 1, is
w.h.p. small uniformly over all networks G true.
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Program

Given a statistic Γ, define a (“universal”) stopping rule T and an
estimator such that the relative error of the estimator, say
Γ(G obs(T ))/Γ(G true)− 1, is small uniformly over all networks G true.

This is ongoing joint work with grad student Lisha Li.

The bottom line of this talk. We have no idea how to do this for most
interesting/natural statistics, but we can do this for a few statistics which
are less interesting/natural.

The rest of this talk:

A typical “easy” example.

A key open problem.

A backwards approach.
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Observed and true community structure.

For a subset A of vertices write A∗ for the set of edges with both
end-vertices in A. Write

wtrue
m = m−2 max

{∑
e∈A∗

we : |A| = m

}

– essentially the maximum edge-density in a size-m community. Ignoring
computational complexity, suppose we can compute the analogous
observable quantity

W
obs

m (t) = m−2 max

{∑
e∈A∗

Ne(t)/t : |A| = m

}
.

To make inferences from the observed G obs(t) to G true we need
m ∼ γ log n at least. Then (just using large deviations and counting) we
can be confident that wtrue

m is in a certain interval, roughly[
W

obs

m (t)−
√

2W
obs
m (t)
γt ,W

obs

m (t)

]
.
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A similar but more complicated estimator works for max-weight
matching.

Let’s standardize time until so that there are O(1) observed interactions
per vertex per unit time. The estimators above require only O(1) time –
this is “the interesting case”.

Informally, what can we say about G true when we have observed an
average 24 interactions per vertex?
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A key open problem.

Typically G true will be connected; but (coupon collector) typically we
need order log n observed interactions per vertex until G obs is connected
– “not the interesting case” because then we can estimate almost all we

accurately.

Here is a fundamental, albeit vague, open problem in the “interesting”
time regime t = Θ(1).

if we observe G obs(t) has a “highly connected” (in some sense)
giant vertex set of size (1− δ)n, then we can infer that G true

has a similarly “highly connected” giant vertex set of size
(1− β(δ))n?

There are many ways to quantify connectedness by a statistic Γ in this
context, for instance via spectral gap of the (restricted) graph Laplacian.
The intuition is that randomness makes G obs less well connected than
G true – but we have no idea how to prove any reasonable version.
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Digression: proving inference assertion involves
The weird logic of freshman (frequentist) statistics

Suppose we have a theorem of the format

Theorem: if G true has property Q∗ then with ≥ 95%
probability Gobs has property Q.

We can restate this as an inference procedure of the format

Inference: if G obs does not have property Q then we are
≥ 95% confident that G true does not have property Q∗.

But we want to state the inference in “positive” terms, so we negate the
property and restate as follows.
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If we wish to justify an inference procedure of the format

Inference: if G obs has property P then we are
≥ 95% confident that G true has property P∗

then we need to prove a theorem of the format

Theorem: if G true does not have property P∗ then with
≥ 95% probability Gobs does not have property P.

Usually with random graph models we are interested in establishing some
“desirable” property; paradoxically in our framework we need to show
G obs has “worse” properties than G true. But our intuition is that the
randomness in G obs will typically make it “worse” than G true, so this
might be true (for instance in the “well-connected very large component”
context above).
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On the positive side, here is a “backwards” approach to our program,
illustrated by example. Consider

T tria
k = inf{t : observed multigraph contains k edge-disjoint triangles}.

T span
k = inf{t : observed multigraph contains k edge-disjoint spanning trees}.

Proposition

s.d.(T tria
k )

ET tria
k

≤
(

e

e − 1

)1/2

k−1/6, k ≥ 1.

s.d.(T span
k )

ET span
k

≤ k−1/2, k ≥ 1.

So here the bounds are independent of w, meaning that we can estimate
the statistics ETk without assumptions on w.

So the “backwards” approach is to seek some observable quantity which
is concentrated around its mean, independent of w, which therefore
provides an estimator of the statistic defined by the expectation.
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From arXiv preprint Weak Concentration for First Passage Percolation
Times on Graphs and General Increasing Set-valued Processes and the
title give a hint of the proof method.

Our observation process, considered as a growing multigraph, is an
increasing set-valued process, for which there is a simple general bound

on s.d.(T )
ET for the first time T that some “increasing” property holds. In

our context, we have

Tk = inf{t : observed multigraph contains k edge-disjoint objects}

and the argument for the bound uses only one object-specific calculation,
which I will outline as a game, which is trivial in the two cases (triangles
and spanning trees) above.
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The game. I choose a multigraph with the given “contains k
edge-disjoint objects” property, and I then delete an edge, and then
show you. Can you always find many different ways to restore the
property by creating a few new edges?

Spanning trees; deleting edge creates a split (A,V \ A) of vertex-set V;
sufficient for you to create any edge between A and V \ A.

Triangles: sufficient for you to create one new triangle.

The bound in the general inequality involves (worst-case) mean “restore”
time in the observation process.

Open problem; Can we do this for the “k-edge connected” property?
(Menger’s theorem doesn’t seem to help).
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